大样本库人脸识别的分级弹性匹配算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.73 TP391

基金项目:

中国博士后科学基金项目(2003033149)


Classified Elastic Matching Face Recognition Algorithm Used in Large Database
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提了了一种提高弹性匹配人脸识别算法速度的新算法。弹性匹配具有较高的识别率,但计算复杂度较高,影响了其在大样本库中的应用。为此提出分级弹性匹配;将弹性匹配的两个步骤(网格平移和网格变形)中的网格平移看作独立的匹配算法;对所有备选人脸图像先做网格平移计算出租匹配度(CMS);根据CMS值将所有人脸图像降序排列,只对CMS值较高的部分图像做网格变形,以100180人的人脸图像库上的测试结果表明:相对于传统的弹性匹配,分级弹性匹配算法能在识别率的损失不大于0.5%的前提下,将网格变形的计算量降低1000倍或者更多。

    Abstract:

    A new algorithm to speed up elastic matching face recognition algorithm was presented.Elastic matching has relatively higher recognition rate but also higher calculation complexity,which limits its application.The main idea of Classified Elastic Matching(CEM) is as follows.Regard grid translation,which is one of the two steps of elastic matching,as an independent matching algorthm.To all candidate face images,do grid translation and calculate corresponding Coarse Matching Score(CMS) at first.Align the candidates in descending order according to CMS.Only to grid distortions to these face images having relatively higher CMS values.Experimental results based on a large database including face images from 100 180 individuals show that the time cost of grid translation in CEM is more than 1 000 times reduced compared to that in traditional elastic matching with recognition rate depressed less than 0.5%.

    参考文献
    相似文献
    引证文献
引用本文

丁嵘 戴琼海 徐文立 苏光大 尹浩.大样本库人脸识别的分级弹性匹配算法[J].光电子激光,2004,(10):1238~1241

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码