基于自适应加权Fisherface算法的人脸识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Face Recognition Based on Adaptively Weighted Fisherface
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种改进的Fisherface算法。算法首先利用Karhunen-Loeve(K-L)变换降维,在降维的子空间内,根据样本与同类样本间的距离赋予该样本一权值,再用加权后的样本求取类均值,以新的类均值重建类内散布矩阵和类间散布矩阵,从而改进Fisher判别函数。在ORL和Yale人脸库上的实验结果表明,该算法优于传统的主成分分析(PCA)方法和Fisherface方法,并能有效解决小样本情况下训练样本类均值偏离类中心的问题。

    Abstract:

    An improved face recognition method based on Fisher linear discriminant analysis is proposed,which can deal with the problem that the class mean of training samples deviates from the center of this class in small sample size case.The feature vectors are resulted from Karhunen-Loeve(K-L) transformation,and the weight of each vector is obtained according to the distance between the feature vector and the others in the same class.After that,the new class means are calculated using the weighted feature vectors.And then the within-class scatter matrix and between-class scatter matrix are rebuilt,which improve the Fisher linear discriminant function.The experiments on ORL and Yale face databases show that the proposed method is superior to principe component analysis(PCA) and fisherface methods.

    参考文献
    相似文献
    引证文献
引用本文

尹洪涛,付平,孟升卫.基于自适应加权Fisherface算法的人脸识别[J].光电子激光,2006,(11):1405~1408

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-01-10
  • 最后修改日期:2006-04-10
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码