基于RBF-NN的压印凹凸字符质量检测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP274.3

基金项目:

山东省农业良种产业化工程项目


Quality Inspecting for the Pressed Protuberant Character Based RBF-NN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了在灰度图像上直接提取压印字符的圆周投影和径向投影特征、基于径向基函数神经网络(RBF—NN)的压印凹凸字符质量检测新方法。检测实验表明,在灰度图像上提取检测特征,不仅保留了压印字符的原始特征,增强了抗干扰性,而且摈弃了复杂的字符图像二值化算法,减少了检测用时。该方法的检测速度为240字符/min,正确率为98.77%,满足标牌压印机的在线检测要求。

    Abstract:

    The pressed protuberant character is a reflectorized character on the difference of reflectance.The characteristic of the character image differs completely with a general character based on the chromatic difference of background and foreground.A new method of quality inspecting for the pressed character based on the radial basis function neural network(RBF-NN) is presented.The method proposes the direct gray-scale feature extraction on the ring and radial projection algorithm.The results show that the method keeps the integrity feature of the protuberant character information dramatically and takes on a higher performance of anti-jamming,and improves the inspecting speed,moreover abandons the complex image binarization algorithm.Its speed is 240 characters per minute,and the accuracy is 98.77%.It satifies the requirements of the quality inspecting on-line system for the metal tag presser.

    参考文献
    相似文献
    引证文献
引用本文

曹建海,李龙,路长厚.基于RBF-NN的压印凹凸字符质量检测研究[J].光电子激光,2006,(8):963~968

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-10-28
  • 最后修改日期:2006-03-07
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码