基于核主元分析和Fisher线性判别的掌纹识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金 , 辽宁省教育厅科技研究项目 ?


Palmprint recognition based on kernel principal component analysis and fisher linear discriminant
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了基于核主元分析(KPCA)和FLD相结合的掌纹识别方法.对每幅掌纹图像应用KPCA进行降维,然后将二维图像矩阵转换成一维图像矢量.PolyU掌纹图像库中所有图像矢量组成的数据矩阵作为FLD的输入,进行特征提取,计算特征矢量间的余弦距离进行掌纹匹配.实验结果说明,与传统的PCA+FLD相比,在不同的特征个数下,本文方法均取得了较小的等错率(EER),而且特征提取时间较短,运行速度较快.在三种不同的核函数中,RBF核函数的识别效果最佳,等错率最小为0.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

郭金玉,苑玮琦.基于核主元分析和Fisher线性判别的掌纹识别[J].光电子激光,2008,(12):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码