基于小波变换和部分最小二乘的掌纹识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Palmprint recognition based on wavelet transformation and partial least square
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    子空间法作为一种传统的识别方法,识别时基于整幅图像,复杂性比较高,而且没有考虑类别信息.为了降低计算复杂性和在提取数据特征的同时融入类别信息,研究了一种基于小波变换和部分最小二乘(PLS)的掌纹识别算法.在建议的识别方法中,首先通过小波三级分解提取低频子图像,对低频子图像应用PLS提取掌纹特征,然后将样本投影到提取的特征上作为特征向量进行分类识别.应用PolyU掌纹图像库进行实验分析,实验结果表明:与主元分析(PCA)、二维主元分析(2DPCA)和独立主元分析(ICA)相比,该方法的识别率得到了很大的提高,大大减小了误识率和拒识率,验证了该方法的有效性.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

郭金玉,苑玮琦.基于小波变换和部分最小二乘的掌纹识别[J].光电子激光,2008,(4):554~557

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2007-06-15
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码