基于改进BP神经网络和粒子群优化算法的图像滤波方法的研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

教育部新世纪优秀人才支持计划?


filtering based on modified BP neural network and PSO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于改进BP神经网络和粒子群优化算法(PSO)的图像滤波方法.该方法利用双曲正切形式的误差函数代替BP神经网络传统的最小均方误差函数(LMS),并将改进后的BP神经网络利用PSO算法优化,用来减小图像噪声对神经网络精度的影响以及避免神经网络陷入局部极小值点,从而提高神经网络去噪能力.实验结果表明,与传统滤波方法相比,该方法不仅能有效地滤除图像中的高斯噪声而且能很好地保护图像细节.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

张银雪,贾振红,刘子建.基于改进BP神经网络和粒子群优化算法的图像滤波方法的研究[J].光电子激光,2009,(3):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码