基于随机非负独立元分析的掌纹识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金资助项目(60972123);辽宁省教育厅科研资助项目(L2010436)


Palmprint recognition based on stochastic non-negative independent component analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出运用随机非负独立元分析(SN-ICA)的新方法进行掌纹识别。为了减少计算量,运用SN-ICA算法前,先采用主元分析(PCA)算法去除掌纹图像的二阶统计特征相关性,其余的高阶非负统计特征由SN-ICA分离。首先用PCA和SN-ICA提取投影向量,然后将训练图像和待识别图像向投影向量上投影得到低维特征向量,最后计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库进行测试,结果表明,与PCA、二维PCA(2D-PCA)、独立元分析(ICA)和二维ICA(2D-ICA)相比,本文算法的识别率最高为98.95%,特征提取和匹配总时间为0.564s,满足实时系统的要求。

    Abstract:

    A new palmprint recognition method based on stochastic non-negative independent component analysis(SN-ICA) is proposed.In order to reduce computational complexity,the principal component analysis(PCA) is used to eliminate the second-order dependencies in the palmprint images.The remaining higher-order dependencies are separated by SN-ICA.First,the PCA and SN-ICA are applied to extract the projection vectors.Then the training images and test images are projected onto the projection vectors to get the palmprint feature vectors.Finally,the cosine distance between two feature vectors is calculated to match palmprint.The new algorithm is tested in PolyU plmprint database.The results show that compared with principal component analysis(PCA),two-dimensional principal component analysis(2D-PCA),independent component analysis(ICA) and two-dimensional independent component analysis(2D-ICA),the recognition rate of the new algorithm is the highest which is 98.95%,and the total time for feature extraction and matching is 0.564 s,so it meets the real-time system specification.

    参考文献
    相似文献
    引证文献
引用本文

郭金玉,刘玉芹,苑玮琦.基于随机非负独立元分析的掌纹识别[J].光电子激光,2011,(11):1714~1717

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码