用概率推导和加权迭代L1范数实现信号重构
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

国家自然科学基金(61175029);国防科技重点实验室基金(9140c610301080c6106,9140c6001070801);航空科学基金(20101996009)资助项目


Signal reconstruction with probability inference and reweighted iterative L1 norm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在对信号稀疏性统计分析的基础上,将具有稀疏描述能力的拉普拉斯分布用于描述信号的先验分布,基于贝叶斯法,利用信号采样值、拉普拉斯先验分布和高斯似然模型,推导信号的后验概率密度估计;最后将最大后验概率(MAP)估计过程转化为加权迭代L1范数的最小化问题。在求解过程中,与非加权的L1范数法进行对比表明,信号重构性能明显提高;通过实验计算,详细讨论了其中一些参数的取值原则和范围;针对稀疏度不同的信号,随着信号非零点数的增加,本文算法重构结果明显优于基追踪(BP)和(OMP)法;与同类的IRL1算法相比较,本文算法更具普遍性和理论意义。

    Abstract:

    Compressive sensing is a novel theory that can compressively sample and reconstruct signal accurately with high probability.In this paper,firstly,based on statistical analysis of the sparsity of signal,the Laplacian distribution,which has the ability of sparsity description,is used as prior distribution;secondly,using Bayes′ rule,the maximum a posteriori(MAP) estimation of signal can be inferred with measurement vector,Laplacian prior distribution and Gaussian likelihood model;thirdly,the process of MAP estimation is transformed to a minimization problem of reweighted iterative L1 norm.The experimental results show that compared with unweighted L1 norm minimization,the signal reconstruction performance of the new method is improved obviously.The principle and range of choosing the parameters used in the distribution are discussed thoroughly.Compared with classical methods,such as BP and OMP,reconstruction results of the new method are superior with increase of nonzero number of sparse signals.The proposed algorithm is more general and has more profound theoretical meanings than to IRL1.

    参考文献
    相似文献
    引证文献
引用本文

何宜宝,毕笃彦,马时平,鲁磊,岳耀帅.用概率推导和加权迭代L1范数实现信号重构[J].光电子激光,2012,(3):579~587

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码