摘要:提出了一种采用自适应加权扩展LBP(AWELBP,adaptively weighted extended local binarypattern)的单样本人脸描述方法,首先对单样本的人脸图像进行多尺度分块,对子块的图像进行扩展均匀LBP算子运算,同时同步生成图像局部熵图谱(LEM,local entropy map),计算每一子块对整体人脸图像纹理描述的贡献度图谱,根据贡献度图谱对每个子块的LBP直方图进行自适应加权,最后将各子块的LBP直方图进行连接形成人脸特征。本算法在ORL、Yale、Yale B人脸库上对部分遮挡、表情变化、光照变化等环境进行测试,并与传统算法以及与多种LBP改进算法进行比较,结果表明该算法对部分遮挡、表情变化和光照等环境下单样本人脸描述具有较好的效果。