土壤压实度的激光图像无损检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U416.06

基金项目:

长安大学工程机械学院青年教师基金(SCMRD2010-02)资助项目


Non-destructive detection for soil compactness by laser imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现土壤压实度检测,建立了土壤压实度的激光图像测量系统。首先采集土壤激光图像,并采用4邻域平均法对其平滑去噪;其次,采用Canny算法提取出激光图像中的激光光斑;然后选择含水量、激光光斑半径、吸收系数和散射系数作为分类器的输入特征参数;最后,利用反向传播(BP)神经网络预测压实度。实验结果表明,BP神经网络经过11次学习后,达到测量精确度的要求;与环刀法实际测量值相比较,平均绝对和相对误差在2%左右。因此,本文测量系统的检测精确度满足土壤压实度的检测要求。

    Abstract:

    In order to realize soil compactness measurement,a laser image measurement system is established and the non-destructive measurement method of soil compactness is investigated.Firstly,the laser image of soil is smoothed by using the 4-neighborhood average filter algorithm.Secondly,the laser spot of the laser image is extracted by using Canny algorithm.Then the water content,laser spot radius,the absorption coefficient and scattering coefficient are selected as the classifier input feature values.Finally,the soil compactness is predicted by BP neural network.The experimental results show that BP neural network reaches the required error after 11 loops.Compared with the measurement values by using the round knife method,the average absolute error and relative error of compactness are less than 2%.Therefore,the measurement accuracy of the system can meet the requirements.

    参考文献
    相似文献
    引证文献
引用本文

赵勇,胡永彪,金月康,李细荣.土壤压实度的激光图像无损检测方法[J].光电子激光,2012,(5):950~955

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码