基于SURF-DAISY算法和随机kd树的快速图像配准
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


Fast image registration based on SURF-DAISY algorithm and randomized kd trees
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于SURF-DAISY算法和随机kd树的快速图像配准方法,首先利用经典SURF特征检测器分别提取参考图像和待配准图像中的特征点,为了进一步提高算法速度,对SURF算法进行改进,利用DAISY描述符代替SURF原有的特征描述算法对特征点进行描述;之后通过随机kd树算法对参考图像和待配准图像的特征点进行匹配并且使用经典RANSAC(随机抽样一致性)算法剔除误匹配点对;最后用最小二乘法估算出最佳的空间几何变换参数,实现两幅图像的配准。实验结果表明:相对于标准的SURF算法,本文方法在基本保持性能不变的同时,配准过程所消耗的时间最多减少了45.6%。

    Abstract:

    A new method for fast image registration based on SURF-DAISY algorithm and randomized kd trees is proposed.Firstly,feature points are extracted using the classic SURF feature detector in the reference image and sensed image,respectively.Then,the DAISY descriptor is utilized to substitute for the customary SURF description algorithm to characterize those feature points to speed up the process.After that,the matching process is carried out via multiple randomized kd trees and the RANSAC is used to eliminate wrong matches.At last,the best transform parameters are estimated by the least square method and the image registration process is accomplished.The experimental results indicate that the proposed method reduces the cost time of the registration process up to 45.6% compared with the classic SURF algorithm while nearly retaining the same performance.

    参考文献
    相似文献
    引证文献
引用本文

丁南南,刘艳滢,张叶,陈春宁,贺柏根.基于SURF-DAISY算法和随机kd树的快速图像配准[J].光电子激光,2012,(7):1395~1402

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码