摘要:为了进一步突出图像结构中人眼敏感的重要特征,采用复数矩阵表示图像结构,将图像的局部方差和像素灰度值分别作为复数的实部和虚部。进而对复数矩阵进行分块奇异值分解,分析了传统奇异值分解图像质量评价方法的特点,将复数矩阵每一分块奇异值分布的标准差作为分块图像结构的表征,分别计算参考图像与待测图像对应图像分块奇异值标准差,从而得到了图像结构失真映射图谱,通过计算图谱中的数据分布特征得到最终的量化评价结果。采用LIVE数据库中包含5种失真类型的779幅测试图像验证所提的算法。试验结果表明,本文方法采用复数矩阵描述图像结构信息,平衡了对各种失真类型的敏感程度,与人眼视觉感知(HVS)的一致性优于传统方法。