自适应二阶总广义变分图像恢复方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

许建楼(1977-),男,博士研究生,主要研究方 向为变分方法、偏微分方程在图像处理中的应用.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60872138,1)和河南科技大学博士科研基金(09001708)资助项目 (1.西安电子科技大学 理学院,陕西 西安 710071; 2.河南科技大学 数学与统计学院, 河南 洛阳 471023)


Image restoration method with adaptive second order total generalized variation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对经典的总变分(TV)去噪模型容易导致阶梯效应 的缺陷,提出了一种自适应的二阶总广义变分(TGV)图像恢 复模型。通过在二阶TGV正则项中引入边缘指示函数,并利用边缘指示函数在平滑区域,增强 扩散,去除噪声,在边缘处降低扩散,保护边缘等特征恢复图像,在新模型中,自适应二阶 总广义变分是正则项,它能自动的平衡一阶和二阶导数项。因此这些特征使得新 模型在去噪的同时不但能够自适应地保持图像的边缘信息,而且还能去除阶梯效应。为了有 效的计算该模型,本文采用原始一对偶算法仿真新模型,实验结果表明,与经 典的TV模型相比,改进的方法无论是在视觉效果还是信噪比(SNR)上都有 明显地提高。

    Abstract:

    Aimming at the drawback of the classical total vaiational denoising model in whi ch the staircasing effect is often produced,an improved image restoration model based on adaptive second order tota l generalized variation (TGV) is proposed in this paper.In the new model,an edge indicator function is introduced in the regularization term of second order tot al generalized variation.The proposed model makes use of the advantages of the e dge indicator function that can improve the diffusion and remove the noise in th e image smooth region,and reduce the diffusion and protect the edges in the imag e non-smooth region to restore the noisy image.The adaptive second order total gneralized vairation is the regularization term in the proposed model,which can automatically balance the first order and second order derivative.So these chara cteristics make the new model preserve the edge information better and avoid the staircasin g effect while removing noise.In order to solve the proposed model effectively,t he primal-dual method is used in this paper.The experimental results show that compared with the existing congeneric algorithms,the new model removes the exist ing noise effectively and preserves the edges of image while avoiding the stairc asing effect.Therefore,the restored results are improved in both visual effects and signal to noise ratio (SNR).

    参考文献
    相似文献
    引证文献
引用本文

许建楼,冯象初,郝岩.自适应二阶总广义变分图像恢复方法[J].光电子激光,2013,(2):378~383

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-07-16
  • 最后修改日期:2012-10-14
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码