基于稠密局部自相似特征流的图像配准算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

徐少平(1976-),男,江西九江人,工学博士,副教授,目前 主要的研究方向为图形图像处理技术、机器视觉和虚拟手术仿真等.

通讯作者:

中图分类号:

基金项目:

国家“863”计划(2013AA013804)、国家自然科学基金(61163023)、江西省自然科学基金(20114BAB211024)和江西省省级教改项目(JXJG12124)资助项目 (1.南昌大学 信息工程学院,江西 南昌 330031; 2.南昌大学 机电工程学院,江西 南昌 330031; 3.加拿大卡尔顿大学 系统与计算机工程系,渥太华 K1S 5B6)


An image registration algorithm based on dense local self-similarity feature fl ow
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于稠密SIFT流图像配准算法执行效率和配准准确率有待提高的不足,提出了一 种基于稠密局部自 相似(LSS)描述符构建的稠密改进的LSS(ILSS)特征流的图像配准算法。算法通过颜色空间转 换分离出彩色图像中的 颜色和亮度信息,只在亮度通道上提取稠密LSS特征以大幅度提高图像特征提取阶段 执行效率。随后以 保持特征流场光滑性为约束条件,采用金字塔多分辨率迭代法提高LSS特征流场估计 阶段的执行效率。 多分辨率迭代法的基本思想是先在图像粗粒度网格上快速估算出初步的特征流场,然后再逐 步求精获得最 终精确的特征流场。大量实验表明,与稠密SIFT流相比,基于稠密ILSS特征流的图像 配准算法在图像内容发生较大变化时具有更好的鲁棒性,同时具有更高的执行效率和图像配 准确率。

    Abstract:

    Aiming at promoting execution efficiency and registration accuracy of dense scale invariant feature transform (SIFT) flow based image registration algorithm,in this paper,a new i mproved dense local self-similarity (ILSS) flow based registration algorithm is proposed.By separating color and lu minance information of color images through the color space conversion,the improved image registration algor ithm only extracts dense self-similar feature on the channel of luminance to improve efficiency of image feature extraction stage substantially.With constraints of maintaining the characteristics of the flow f ield smoothness,we then employ pyramid multi-resolution iterative method to improve the computational efficien cy of the estimation of the self-similar flow field stage.The basic idea of the multi-resolution iterativ e method is to roughly estimate the dense ILSS flow at a coarse level of image grid,then gradually propagate and re fine the dense flow from coarse to fine.A large number of experimental results show that compared with dense SIFT f low based image registration algorithm, the dense ILSS flow based one allows robust matching across different scene appe arances and has higher computational efficiency and registration accuracy.The success on these experim ents suggests that the image registration using dense ILSS flow can be a useful tool for various applications in computer vision and computer graphics.

    参考文献
    相似文献
    引证文献
引用本文

徐少平,刘小平,李春泉,胡凌燕,杨晓辉.基于稠密局部自相似特征流的图像配准算法[J].光电子激光,2013,(8):1619~1628

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-11-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码