非线性自适应迭代重建算法用于相干层析抗噪仿真
DOI:
CSTR:
作者:
作者单位:

作者简介:

曲培树(1978-),男,硕士,教师,主要从事图像信息处理技 术的研究.

通讯作者:

中图分类号:

基金项目:

(国家自然科学基金(11203006)、山东省自然科学基金(ZR2009AM021)资助项目 (德州学院 物理系,山东 德州 253000)


Simulation on anti noise performance of nonlinear auto adjusting iterative reconstruction technique used in interferometric tomography
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为进一步完善非线性自适应迭代重建算法(NAIRT) 并将其可靠地应用于实际流场层析诊断,仿真研究了NAIRT的抗噪性能。 采用仿真技术,模拟含跳变的复杂空气流场,相干投影,获得Radon变换投影数据。采用Ran dG函数模 拟产生Gauss随机噪声,噪声的相对强度通过信噪比(SNR)标征,设置强 度不同的SNR,获得相应的随机噪声。 随机噪声与投影数据线性叠加,获得含噪投影。采用NAIRT逆投影重建,重建结果与无噪重 建结果比较, 并用均方差(MSE)对重建结果定量分析。结果发现,在60dB SNR噪声情况下,NAIRT能够比较精确重 建 仿真流场,MSE降到1.82×10-5;10dB SNR时,NAIRT仍能重建出仿真场的轮廓,MSE稳定在4.91×10 -4; 100dB SNR时,NAIRT能够十分精 确地重建仿真流场,MSE衰减到1.26×10 -6,逼近无噪重建效果。重建图像和误差分析都表明,NAIRT 具有十分优越的抗噪性能。

    Abstract:

    In order to further improve nonlinear auto-adjusting iterative reconstruction t echnique (NAIRT) and reliably apply it to d iagnose actual air flow field,the anti-noise performance of the NAIRT is specially investigated by simulations.A complicated air flow field is simulated with transition object.It is projected by interferometric tomography.The real projections are obtained by Radon transformation.Gaussian random noise signals are simulated to be produced with function RandG.The noise′s relative intensity is expressed with the ratio of signal to noise (S/N).A series of corresponding Gaussian random noise signals are produced with different intensity levels by simple cal culation.The projections containing noises are obtained from the real projections added with noise linea rly.The inverse projection reconstructions are implemented with NAIRT.The reconstructed results are anal yzed in mean square error (MSE) index and compared with the result reconstructed w ith clean projections un der the same conditions.At the noise level of 60dB S/N,NAIRT could reconstruct the model by a decent accuracy.The MSE declins to 1.82×10-5 after about 40iteration cycles.At the nois e level of 10dB S/N,NAIRT could still reconstruct the model by the level of the profile.The MSE is stabilized at 4.91×10-4 after about 40iteration cycles. At the noise level of 100dB S/N,NAIRT could accurately reconstruct the mo del by micro-detail.The MSE declines to 1.26×10-6 at the end of 103iteration cycles.The reconstruct ed result is very close to that reconstructed with clean projections.Both the reconstructed images and MSE analyses demonstrate that NAIRT has wonderful anti-noise pe rformance.

    参考文献
    相似文献
    引证文献
引用本文

曲培树,宋一中.非线性自适应迭代重建算法用于相干层析抗噪仿真[J].光电子激光,2013,(8):1644~1650

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-11-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码