基于贝叶斯检验模型的压缩感知算法及应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

杨军(1973-),男,工学博士,副教授,硕士研究生导师 ,主要从事雷达系统现代信号处理及应用研究.

通讯作者:

中图分类号:

基金项目:


A signal recovery algorithm for compressed sensing based on Bayesian model and its application
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对正交匹配追踪(OMP)算法需设置冗余的支撑集 ,导致信号重构时运算量变大、抗噪性能 和重构性能变差等问题,提出了一种基于贝叶斯模型的OMP(BOMP,bayesian orthogonal mat ching pursuit)算法。首先利用贝叶斯检 验模型和OMP算法合理去除支撑集中的冗余部分,得到相等或略大于信号真实稀疏度的支撑 集;其次构建BOMP的 信号重构算法;最后将算法应用于ISAR成像。仿真和实测数据结果表明,由于本文算法可近 似 估计到信号的真实稀疏度,因此具有更好的抗噪性能以及重构精度,相应的运算量也明显减 少。

    Abstract:

    The orthogonal matching pursuit (OMP) algorithm must set a redundant su pport in advance,which leads to heavier computation burden,lower noise suppressi ve ability and poor signal reconstructed p erformance.This paper proposes a Bayesian orthogonal matching pursuit(BOMP) algorithm.Firstly,the redundant support is properly del eted by using Bayesian model and OMP algorithm to obtain a proper support,which is equivalent to the real support or so. Secondly,the BOMP sparse signal reconstruction algo rithm is constructed.Finally,the BOMP algorithm is used for ISAR imaging.Simul ation results and experimental results of real data show that by means of approximate estimation of sparsity,the proposed algorithm can enhance the noise suppressive ability,recon struction accuracy and decrease the computing complexity obviously.

    参考文献
    相似文献
    引证文献
引用本文

裴文炯,李少东,杨军,胡国旗.基于贝叶斯检验模型的压缩感知算法及应用[J].光电子激光,2014,(6):1213~1219

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-09-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码