基于稀疏表示的立体图像客观质量评价方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

邵枫(1980-)男,浙江杭州人,博士,副教 授,主要从事三维视频信号编码与质量评价方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61271021)资助项目 (宁波大学 信息科学与工程学院,浙江 宁波 315211)


An objective quality assessment of stereoscopic image based on sparse representation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于稀疏表示的立体图像质量评价方法 ,分为训练和测试两个部分。在训练部 分,通过训练不同频带的立体图像获得立体图像的稀疏字典;在测试部分,根据稀疏字典计 算得到立体图 像的稀疏特征,定义了稀疏特征相似度衡量原始和失真图像信息的差异,并根据稀疏字典计 算了频带增益和左右视点的融合权值,最后融合稀疏特征相似度作为立体图像质量的 客观评价值。在立体图像测试库上的实验结果表明,本文方法的评价结果与主观评价结果有 较好的相关性,符合人类视觉系统的感知。

    Abstract:

    Stereoscopic image quality assessment is an effective way to evaluate the performance of stereoscopic video system,and objective stereoscopic image quality assessment consistent with subj ective perception is still a great challenge in image quality assessment.In this paper,an objective quality assessment meth od for stereoscopic image based on sparse representation is proposed.The proposed method is composed of two stages :training and testing.In the training stage,sparse dictionaries on different frequency channels are learned from the training images.In the testing stage,sparse features for all images are extracted based on the learnt sparse dictionaries,and sparse feature similarities between the reference and distorted images are calculated for each view.In addition,the gain of each channel and weights of two views are computed to model the binocular physiologic al behaviors.Finally,by fusing the gain and weights,the objective quality score is obtained.Experimental resu lts show that the proposed metric can achieve better consistency with subjective assessment,which indicates that the metric can predict human visual perception very well.

    参考文献
    相似文献
    引证文献
引用本文

李柯蒙,邵枫,蒋刚毅,郁梅.基于稀疏表示的立体图像客观质量评价方法[J].光电子激光,2014,(11):2227~2233

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-07-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码