基于U分布的PolSAR图像无监督MAP分类方法
DOI:
CSTR:
作者:
作者单位:

(海军装备研究院,北京 昌平 102249)

作者简介:

王日胜(1975-),男,浙江人,硕士,高工,研究方向为图像 处理.

通讯作者:

中图分类号:

基金项目:


Unsupervised MAP classification of PolSAR image using U distribution
Author:
Affiliation:

(Navy Academy of Armament,Beijing 102249,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    结合U分布对不同匀质性极化合成孔径雷达(PolSAR ) 数据的广泛建模能力及Potts马尔科夫随机场(MRF)模型对像素点之间类相关 性的建模能力,提出了一种基于最大后验概率(MAP)准则的Po lSAR图像无监督分类方法。利用迭代条件模式 算法和Metropolis采样算法对像素点的类别进行更新,迭代过程中分布参数的估计采用基于 梅林(Mellin) 变换的矩阵对数累积量方法,以迭代过程中出现次数最多的类别最为像素点的最终分类结果 。利用 NASA/JPL实验室AIRSAR系统获取旧金山湾的PolSAR数据,对本文分类算法的有效性以及分布 的 杂波建模能力进行了仿真验证。实验结果表明,本文分类算法的精度优于Lee分类算法,分 布对PolSAR数据的杂波建模准确性总体上优于复Wishart分布、K分布和G0分布。

    Abstract:

    The accurate classification of polarim etric synthetic aperture radar (PolSAR) images is a challenging task because o f the existence of the speckle noise resulting in many false alarms.By combining the capability of the distribution in fitting different clutter regions in the PolSAR image and the capability of the Potts Markov random fields of modeling the contextual class information between neighb oring pixels,a new unsupervised classification algorithm for PolSAR data is proposed based on maxim um a posteriori (MAP) criterion.Firstly,the conditional iterative mode algorithm and the Metropolis sa mpling algorithm are utilized to refresh the class type of each pixel by iteratively resolving the objective func tion which is established by the MAP classification criterion.Secondly,at each iteration step,to get more accurate cl assification result,the distribution parameters are estimated by using the method of matrix log-cumulan ts which is based on the Mellin transform.Finally,the final class type of each pixel is the one which appears mo st times in the iteration steps.The experiment utilizing an NASA/JPL/AIRSAR polarimetric SAR image demonstrates that the proposed algorithm gets more accurate classification result than the Lee method,and the distribution fi ts the clutter of the PolSAR better than the Wishart distribution,K distribution and G0distribution.

    参考文献
    相似文献
    引证文献
引用本文

王日胜,袁湛,夏明卓,李岩,胡兵.基于U分布的PolSAR图像无监督MAP分类方法[J].光电子激光,2015,26(4):788~796

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-12-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-05-25
  • 出版日期:
文章二维码