基于布谷鸟搜索算法的高光谱图像解混算法
DOI:
CSTR:
作者:
作者单位:

(1.天津大学 电子信息工程学院,天津 300072; 2.天津大学 精密仪器与光电子工程学院,天津 300072; 3.天津商业大学 信息工程学院,天津 300134)

作者简介:

陈雷(1980-),男,河北唐山人,博士,博 士后,副教授,主要研究领域:盲信号处理、高光谱图像处理.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61401307)、中国博士后科学基金(2014M561184)和天津市应用基础 与前沿技术研究计划(15JCYBJC17100)资助项目 (1.天津大学 电子信息工程学院,天津 300072; 2.天津大学 精密仪器与光电子工程学院,天津 300072; 3.天津商业大学 信息工程学院,天津 300134)


Hyperspectral image unmixing algorithm based on cuckoo search algorithm
Author:
Affiliation:

(1.School of Electronic Information Engineering,Tianjin University,Tianjin 300072,China; 2.School of Precision Instrument and Optoelectronics Engineering,Tianjin Univers ity,Tianjin 300072,China; 3.School of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将独立成分分析(ICA)算法用于高光谱图像解混时 ,算法对丰度的独立性要求与实际地物分布相矛盾;同时, 采用梯度算法对解混目标函数进行优化时,易收敛到局部极值点。针对上述问题,提出在非 负ICA(NICA)模型的目标函数中引入丰度和为一约束(ASC),确保解混出的丰度与实际地物分 布一致;同时,采用布谷鸟搜 索(CS)算法,利用其优异的全局搜索性能对提出的目标函数进行优化求解。为减少参数维数 并缩小CS算法的搜索范围,利用矩阵QR分解理论,将对解混矩阵的搜索转化为对一系列Give s矩阵的识别。仿真 数据和真实高光谱图像数据实验结果表明,提出的算法能有效地克服上述问题,在噪声为30dB、像元纯度为0.8时,解混指标光谱角距离(SAD)和 均方根误差(RMSE)达到了0.03以下,达到良好解混效果。

    Abstract:

    Independent component analysis (ICA) is a typical blind source separation algorithm.Nowadays,it has been applied to s o lve the problem of hyperspectral unmixing.Under linear mixture model,a pixel spe ctrum of hyperspectral image can be approximated to a collection of constituent spectra, called endmember and a corresponding set of fractional abundances,one set per pixel.However,the ac tual ground-object distribution demands that the abundance should satisfy both abundance nonnegativity constraint (ANC) and abundance sum-to-one constraint (ASC).Thus,the independence requirement of ICA conflicts with these t wo constraints and it′s easy to converge to local minima with gradient algorithm to optimize the relevant obj ective function.To solve this problem,we propose to combine the non-negative independent component analysis model with abundance sum-to-one constraint to construct a novel objective function,and introduce c uckoo search (CS) algorithm to optimize the function with its excellent global searching ability.Experimental results o n synthetic data and real hyperspectral data indicate that the proposed algorithm can effectively solve the above problems and obtain more accurate results without any spectral prior knowledge.When signal- to-noise ratio (SNR) is set to 30dB and purity of pixel is set to 0.8,these unmixing indexes,which are spectra l angel distance (SAD) and mean square error (RMSE),can reach below 0.03.

    参考文献
    相似文献
    引证文献
引用本文

孙彦慧,张立毅,陈雷,李锵,滕建辅,刘静光.基于布谷鸟搜索算法的高光谱图像解混算法[J].光电子激光,2015,26(9):1806~1813

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-09-30
  • 出版日期:
文章二维码