基于亮度统计的无参考图像质量评价
DOI:
CSTR:
作者:
作者单位:

(1.浙江理工大学 自动化系,浙江 杭州 310018; 2.浙江理工大学 电子信息工程系,浙江 杭州 310018)

作者简介:

李俊峰(1978-),男,河南南阳人,博士,副教 授,主要从事机器视觉、图像质量评价等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61374022)、浙江省公益性技术应用研究计划项目(2014C33109)、浙江省新型网络标准及其应用技术重点实验室开放课题(2013E10012)及浙江理工大学研究生创新研究(YCX15025)资助项目 (1.浙江理工大学 自动化系,浙江 杭州 310018; 2.浙江理工大学 电子信息工程系,浙江 杭州 310018)


No-reference image quality assessment based on luminance statistics
Author:
Affiliation:

(1.Department of Automation,Zhejiang Sci-Tech University,Hangzhou 310018; 2.Department of Electronic Information Engineering,Zhejiang Sci-Tech University,Hangzhou,310018)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于亮度均值减损对比归一化(MSCN) 系数统计特性及其8方 向邻域系数间的相关性,提出了一种通用无参考图像质量评价方法.首先,分别利用非 对称广义高斯分布(AGGD)模型拟合MSCN系数及其8方 向邻域系数,并估计 相应AGGD 模型参数作为亮度统计特征;其次,计算8方向邻域MSCN系数间的互信息(MI),作为描述方向相 关性的统计特征;进而,分别利用支持向量回归机(SVR)和支 持向量分类机(SVC)构建无参考图像质量评价模型和图像失真类型识别模型; 最后, 在LIVE 等图像质量 评价数据库上进行了算法与DMOS的相关性、失真类型识别、模型 鲁棒性及计算复杂性等方面的实验。实 验结果表明,本文方法的评价结果与人类主观评价具有高度的一致性,在LIVE图像质量评 价数据库上的斯 皮尔曼等级相关系数(SROCC)和皮尔逊线性相关系数 (PLCC)均在0.945以上;而且,图像失真 类型识别模型的识别准确率也高达到92.95%,明显高于 当今主流无参考图像质量评价方法。

    Abstract:

    Based on the statistical properties of mean subtracted contrast normal ized (MSCN) coefficient and the correlation between MSCN neighborhood coefficients along 8directions,a general -purpose no-reference image quality assessment(NR-IQA) method is proposed.Firstly,asymmetric generalized gaussian distribution (AGGD) models are used to fit MSCN coefficient and its neighborhood coefficients along 8directions respectively,and the parameters of those AGGD models are estimated as the statistical characteristics of luminance.Secondly,the mutual information (MI) between neighborhood MSCN coefficients along 8directions are calculated as the statistical characteristics of directional correlation.Moreover,support vector regression (SVR) and support vector classifier (SVC) are used to construct the NR-IQA model and the image distortio n type recognition model,respectively.At last,in order to analyze the correlation with differential mean opinion score (DMOS),the classification accuracy and the computational complexit y,a large number of simulation experiments are carried out in the LIVE image quality evaluation database.The simulation re sults show that this method is suitable for many common distortions and consistent with subjective assessment, and the Spearman′s rank ordered correlation coefficient (SROCC) and the Pearson ′s linear correlation coefficient (PLCC) in LIVE image quality evaluation database are more than 0.945.In addition,the recognit ion accuracy of the recognition model is up to 92.95% and significantly superior to all present NR-IQA methods.

    参考文献
    相似文献
    引证文献
引用本文

李俊峰,张之祥,沈军民.基于亮度统计的无参考图像质量评价[J].光电子激光,2016,27(10):1101~1110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-11-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-11-07
  • 出版日期:
文章二维码