基于机器学习的HEVC帧内模式快速决策算法
DOI:
CSTR:
作者:
作者单位:

(北京航空航天大学 仪器科学与光电工程学院 测控与信息技术系,北京 100191)

作者简介:

祝世平(1970-),男,河北深泽人,博士,副教授,主要从 事图像和视频处理、计算机视觉和机器视觉在精密测量中的应用等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61375025,1,60675018)和教育部留学回国人员科研启动基金 (北京航空航天大学 仪器科学与光电工程学院测控与信息技术系,北京 100191)


A fast HEVC intra mode decision algorithm based on machine learning
Author:
Affiliation:

(Department of Measurement Control and Information Technology,School of Instrum entation Science and Optoelectronics Engineering,Beihang University,Beijing 100191,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高效视频编码(HEVC)计算复杂度过高的情况, 提出了一种基于机器学习的帧内快速决策算法。根据图像内容的平滑 程度将PU划分成3类,对具有一定平滑度的预测单元(PU)不需要遍历完所有的帧内预测模式 ,从而有效降低算法的计算复杂度。首 先,计算各个PU的左边参考像素方差、上边参考像素方差和总参考像素的方差,以及各个P U采用的最优的帧内预测模式, 这些方差反映了参考像素的平滑程度;然后,利用机器学习软件Weka对得到的数据进行分类 处理,得到分类决策树; 最后,根据决策树来判定各个PU需要测试的帧内模式,再对各个PU 遍历这些帧内模式,确 定最优的模式,减少不必要 预测,从而降低编码复杂度。实验结果表明,本文算法相对于标准的HEVC 15.0编码算法,在高码率的情况下,编码时间平 均节省约16.18%,BD-rate平均升高约0.25%,BD-PSNR平均降低约0.02 dB;在低码率的情况下,编码时 间平均节省约20.75%,BD-rate平均升高 约0.04%,BD-PSNR平均降低约0.00dB。

    Abstract:

    In view of the high computational comp lexity of high efficiency video coding (HEVC) encoding,a fast algorithm based on machine learning is proposed in this paper.According to the smoothness of image content,we divide prediction units (PUs) into th ree classes.The smooth PU has no need to test all the intra prediction modes.Thus,the computational complexity of the algorithm ca n be reduced effectively.First,we calculate the variance of the reference pixels on the left side,the above side of each PU,and the variance of all the reference pixels,as well as the optimal intra prediction mode for each PU.The variances reflect the smoothness of the reference pixels.Then,the machine learning software of Weka is used to classify the obtained data previously,and a decision tree is generated.Finally,according to the decision tree, the intra prediction modes for each PU to be tested are determined,then these i ntra modes are tested for each PU to choose the optimal mode,reducing unnecessary process,thus reducing the encoding complexity. Experimental results show that compared with the standard HEVC 15.0coding algorithm,in the case of high bitrate,the encoding time is reduced by about 16.18% on average with negligible increase of Bjontegaard delta rate (BD-rate) (about 0.25%) and decrease of Bjontegaard delta peak signal-to-noise rate (BD-PS) NR (about 0.02dB).In the case of low bitrate,the encoding time is reduced by about 20.75% on average with negligible increase of BD-rate (about 0.04%) and decrease of BD-PSNR (about 0.00dB).

    参考文献
    相似文献
    引证文献
引用本文

祝世平,张春燕.基于机器学习的HEVC帧内模式快速决策算法[J].光电子激光,2016,27(11):1199~1207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-12-01
  • 出版日期:
文章二维码