融合协作表达和重构判别分析的数据降维算法
DOI:
CSTR:
作者:
作者单位:

(1.浙江科技学院,信息与电子工程学院,浙江 杭州 310023; 2.台州学院图像处 理与模式识别研究所,浙江 台州 318000)

作者简介:

楼宋江(1982-),男,浙江绍兴人,博士,讲师,主 要从事图像处理和机器学习方向的研究.

通讯作者:

中图分类号:

基金项目:

浙江省自然科学基金项目(LQ15F020001)资助项目 (1.浙江科技学院,信息与电子工程学院,浙江 杭州 310023; 2.台州学院图像处理与模式识别研究所,浙江 台州 318000)


Dimensionality reduction via collaborative constrained reconstructive discrimina nt analysis
Author:
Affiliation:

(1.School of Information and Electronic Engineering,Zhejiang University of Scie nce and Technology,Hangzhou 310023,China; 2.Institute of Image Processi ng & Pattern Recognition,Tai Zhou University,Taizhou Zhejiang,318000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据降维是处理高维数据的有效手段。子空间学 习算法由于其计算量小,性能较为出 色而广泛应用于模式识别等领域,传统的子空间学习算法均可归纳为图嵌入算法框架中。稀 疏表达是近年来的一个研究热点,并广泛应用于信号处理和模式识别等领域,但计算复杂度 较高。在稀疏表达的基础上,研究者提出了协作表达。相比稀疏表达,协作表达算法由于其 有一个闭式解,因而计算量较小且判别性能较好,可以看成是数据表达的一种有效方法。本 文从协作表达的角度来解释图嵌入算法,将图嵌入算法看作是一类回归模型。通过最小化类 内重构误差散度的同时最大化类间重构误差散度,提出了一种新的图嵌入算法,即重构判别 分析,并将它应用于该回归模型中,然后将问题归结为一广义的特征值问题,算法在某种程 度上能有效避免子空间学习过程中矩阵的奇异性问题。在人脸识别上的实验验证了算法的正 确性和有效性。

    Abstract:

    Dimensionality reduction is an effective method for treating high dime nsional data. Subspace learning is widely used in pattern recognition due to its low complexit y and desirable performance,and most of the subspace learning algorithms can be plugged into the graph embedding framework.Sparse representation gains much attention in recent years, and has wide applications in signal processing and pattern recognition,but it is time consum ing.Based on sparse representation,collaborative representation is proposed.Compared with spa rse representation,collaborative representation has a tractable closed-form solution and better discriminative power,so it i s widely used in data representation and visual classification.In this paper,the graph embedding is formulated as a manner of collaborative representation.By mini mizing the intra-class reconstructive error scatter and maximizing the inter-class recons tructive error scatter, a new graph embedding algorithm called reconstructive discriminant analysis is p roposed,and is applied in this regression model,then the solution is reduced to a generalized eigen-value problem,which to some extent can avoid the singularity problem in subspace lear ning algorithms. Various experiments on face recognition demonstrate the correctiveness and effec tiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

楼宋江,马杨珲,向坚,赵小明.融合协作表达和重构判别分析的数据降维算法[J].光电子激光,2018,29(5):553~559

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-05-24
  • 出版日期:
文章二维码