光纤振动信号特征提取及线性分类方法
DOI:
CSTR:
作者:
作者单位:

(北方工业大学 电子信息学院,北京 100144)

作者简介:

盛智勇(1979-),男,工程硕士,讲 师,主要从事信号处理、机器学习方面的研究.

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2017YFB1201100)资助项目 (北方工业大学 电子信息学院,北京 100144)


Feature extraction and linear classification for Fiber vibration signals
Author:
Affiliation:

(College of Information Engineering,North China University of Technology,Beij ing 100144,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在光纤预警系统(OFPS)中产生的入侵事件主要分 为有害入侵和无害入侵。目前对于这两类扰动常规 的特征提取方法通常是采用时域分析,但是对于不同有害入侵事件其时域特征区分不明显, 因此时域处理 不能更好体现它们之间的细节差别。通过对有害入侵信号的频谱进行统计研究发现,不同信 号的频谱分布 存在较为明显的差异性,因此本文将入侵信号变换到频域并借鉴声信号的处理方法,提出了 一种基于能量 占比特征的有害入侵事件识别算法。对采集到的振动信号进行预处理并计算功率谱密度(PSD ),计算各信号 不同频段的能量占比,并将其作为信号分类识别的特征。之后将能量占比特征作为样本送入 分类器进行 OFPS振动信号识别。在分类器的选择上,本文采用线性判别分析(LDA)分类器对信号进行识 别,LDA能 最大限度的保持原始数据信息,并有效区分振动信号。通过实验结果表明该算法在OFPS 振 动信号的识别 研究中提高了有害入侵信号的识别率,从而验证了本算法的可行性,同时有效减少了识别时 间。

    Abstract:

    The intrusion events in the optical fiber pre-warning system (OFPS) a re divided into two types,which are harmful intrusion event and harmless interference event.At present,the sig nal feature extraction methods of them are usually designed from the view of time domain.Howe ver,the differences of time-domain characteristics for different harmful intrusion events are not obvi ous,which cannot reflect the diversity of them in detail.In our statistical study,we find that the spectrum distributions of different intrusion signals have obvious differences,so that the intrusion signal is transformed int o the frequency domain for analysis. In this paper,an identification method of harmful intrusion event based on ener gy ratio is proposed according to the analysis method of acoustic signal.Firstly,the intrusion signals are pre- processed and the power spectral density (PSD) is calculated.Then the energy ratios of different frequency bands are calculated and the corresponding feature vector of each type of intrusion signal is further formed,which is inp ut into the classifier for training and recognition.The linear discriminant analysis (LDA) classifier is used to identi fy the signal,which can make use of the information of original data and distinguish different intrusion signals efficiently.Experimental results show that the algorithm improves the recognition accuracy of the intrusi on signal,which verifies the feasibility and validity of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

盛智勇,张新燕,王彦平,曲洪权.光纤振动信号特征提取及线性分类方法[J].光电子激光,2018,29(7):760~768

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-30
  • 出版日期:
文章二维码