光纤光栅电压传感器非线性校正研究
DOI:
CSTR:
作者:
作者单位:

(哈尔滨理工大学 电气与电子工程学院,黑龙江 哈尔滨 150080)

作者简介:

张开玉(1978-),男,工学博士,副教授,硕士生导师,主 要从事光纤传感、高压绝缘测试、信号处理等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家留学基金委青年骨干教师出国研修(201608930008)资助项目 (哈尔滨理工大学电气与电子工程学院,黑龙江哈尔滨 150080)


Research on nonlinear correction of fiber Bragg grating voltage sensor
Author:
Affiliation:

(School of Electrical and Electronic Engineering,Harbin University of Science a nd Technology,Harbin 150080,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的光纤光栅电压传感器非线性校正算法具 有运行速度慢,拟合精度不高的缺陷。在研究了大量国内外文献过后,本文为了解决一些传 统非线性校正方法在光栅光纤传感器校正中的不足,在此提出了一种基于蚁群算法优化的分 段支持向量机回归的 校正算法。由于传统的蚁群算法在信号处理中搜索速度不理想,最小二乘支持向量机回归算 法精度不高,所以此算法是结合了蚁群 算法搜索最小二乘支持向量机回归最佳参数原理的基础上将样本空间按照数据分布情况进行 分段回归,以此减少算法运行时间。首 先通过蚁群算法优化各个支持向量机参数,然后通过分段回归得到传感器完整的特性,曲线 拟合精度为99.97%。此算法克服了传统 支持向量机回归算法中局部最优解的问题,具有较好的全局收敛效果。

    Abstract:

    In order to solve some shortcomings of traditional nonlinear correction methods in grating optical fiber sensor calibration,a segmented correction algorithm is put forward based on support vector regressions (SVR) of ant colony optimization (ACO).Because the search speed of t he traditional ant colony algorithm is not ideal in the signal processing,and th e precision of the least squares support vector machine regression algorithm is not high,this algor ithm combines the ant colony algorithm to search the optimal parameter principle of the least square support vector mac hine,and the sample space is piecewise regression according to the data distribution to reduce the running time of the algorithm.The parameters of each SVM can be optimized by ACO,and the consequence is put together to achieve the integ rated characteristic of the sensor.The fitness of the algorithm can reach 99.97%.This algorithm overcomes the local op timal solution problem,and has better global convergence effect.

    参考文献
    相似文献
    引证文献
引用本文

张开玉,李燕秋,卢迪.光纤光栅电压传感器非线性校正研究[J].光电子激光,2018,29(11):1155~1161

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-14
  • 出版日期:
文章二维码