基于双字典学习的眼底图像血管分割
DOI:
CSTR:
作者:
作者单位:

(宁波大学 信息科学与工程学院,浙江 宁波 315211)

作者简介:

邵枫(1980-)男,浙江杭州人,教授,主要从事三维视频 信号处理与编码、三维图像质量评价、图像感知等方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61622109)和宁波市自然科学基金(2017A610112)资助项目 (宁波大学 信息科学与工程学院,浙江 宁波 315211)


Fundus image blood vessel segmentation via joint dictionary learning
Author:
Affiliation:

(Faculty of Information Science and Engineering,Ningbo University,Ningbo 315211, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为辅助诊断眼底疾病和部分心血管疾病,本文提 出一种基于双字典学习和多尺度线状结构检测的眼底图 像血管分割方法。首先在HSV颜色空间利用伽马矫正均衡眼底图像的亮度,并在Lab颜色空间 采用CLAHE 算法提升图像对比度,再采用多尺度线状结构检测算法突出血管结构得到增强后的特征图像 ;然后利用 K-SVD算法训练特征图像块和对应的手绘血管标签图像块,得到表示字典和分割字典,采用 表示字典得到 新输入特征图像块的重构稀疏系数,由该系数和分割字典获得血管图像块;最后进行图像块 拼接、噪声去 除和空洞填充等后处理得到最终分割结果。在DRIVE和HRF数据库测试,利用准确率、特异度 、敏感度 等八种评估指标来检验分割性能。其中,平均准确率分别达0.958和0.951,平均特异度分别 达到0.982 和0.967,平均敏感度分别达到0.709和0.762,表明该 方法具有较好的分割性能和通用性。

    Abstract:

    In order to assist the diagnoses of fundus diseases and some cardiovas cular diseases,this paper proposes a fundus image blood vessel segmentation method via joint dictionary learning an d multi-scale line structure detection.Firstly,brightness is adjusted and balanced by gamma correction in H SV color space,contrast is improved via CLAHE algorithm in Lab color space,and multi-scale line structure detection algorithm is used to enhance the blood vessel structures and get the feature maps.Then,the represen tation dictionary and segmentation dictionary are trained simultaneously by K-SVD algorithm from the feature block s and its corresponding manually annotated vessel label blocks.The reconstructed sparse coefficients of ne wly input enhanced feature blocks are obtained with the representation dictionary,and the blood vessel blocks are segmented by these coefficients and segmentation dictionary.Finally,the blood vessel result is obtained via im age blocks stitching,noise removal and hole filling algorithms.Our method is tested on DRIVE and HRF databases to evaluate the segmentation performance in accuracy,sensitivity,specificity and other five metr ics.The average accuracy rate reaches 0.9582and 0.9515respectively,the average specificity reaches 0.9826and 0.9671respectively,the average sensitivity reaches 0.7095and 0.7626respectively,which indicates that our method has good segmentation performance and versatility.

    参考文献
    相似文献
    引证文献
引用本文

杨艳,邵枫.基于双字典学习的眼底图像血管分割[J].光电子激光,2019,30(2):200~207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-05-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-26
  • 出版日期:
文章二维码