卷积稀疏表示和邻域特征结合的多聚焦图像融合
DOI:
CSTR:
作者:
作者单位:

(昆明理工大学 信息工程与自动化学院,云南 昆明 650500)

作者简介:

杜庆治男,硕士,高级实验师,主要研究方向为信 息处理、通讯与信息系统.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61761025)资助项目 (昆明理工大学 信息工程与自动化学院,云南 昆明 650500)


Multi-focus image fusion based on convolution sparse representation and neighbo rhood features
Author:
Affiliation:

(Faculty of Information Engineering and Automation,Kunming University of Scien ce and Technology,Kunming 650500,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    稀疏表示的分块处理破环了图像的连续性,导致 多聚焦融合图像的清晰测度信息严重丢失。针对上述 问题,提出了卷积稀疏表示和邻域特征结合的多聚焦图像融合算法。该算法将非下采样轮廓 波变换(NSCT)域低频子图通过高斯滤波分解 成基础层和细节层,然后选用交替方向乘子算法(ADMM)求解稀疏系数,完成细节层特征响 应系数的融合。同时, 根据聚焦程度测量函数设计了合理的邻域特征,完成了NSCT域高频子图的融合。实验结果表 明:该算法边缘信息 传递因子(QAB/F)指标略低于对比算法, 但空间频率(SF)、平均梯度(AG)、清晰度(SP)以及视觉信息保 真度(VIFF)指标相比于对比算法分别提高了约16.31% 、41.87%、19.2%以及12.07%,有效地提取了源图像更深 层次的清晰测度信息,克服了稀疏表示的块效应缺陷。

    Abstract:

    In the image fusion process,the sparse representation has block processing to break the continuity of the image,result ing in serious loss of clear measurement information of the multi-focus fused i mage.To solve this problem,a multi-focus image fusion algorithm based on convol ution sparse representation and neighborhood features is proposed.This algorithm deco mposes the low-frequency subgraphs of the non-down sampling contourlet transform (NSCT) d omain into the base layer and the detail layer by Gaussian filtering, and then uses the alternating direction multiplier algorithm (ADMM) to solve the sparse coefficients to complete the fusion of feature response coefficients of the detail layer.At the same time,a reasonable neighborhood feature is designed based on the focus degree measureme nt function to complete the fusion of high-frequency subgraphs in the NSCT domain.The experimental res ults show that the edge information transfer factor (QAB/F) of this algori thm is only slightly lower than that of the comparison algorithm,but the spatial frequency (SF),aver age gradient (AG),sharpness (SP) and visual information fidelity (VIFF) increase by about 16.31%,41. 87%,19.2%,and 12.07%,respectively, compared with the comparison algorithm.The proposed algorithm effectively extrac ts the deeper clear measurement information of the source image,also overcomes the bloc kiness defect of sparse representation,and has better fusion performance.

    参考文献
    相似文献
    引证文献
引用本文

董安勇,杜庆治,龙华,邵玉斌.卷积稀疏表示和邻域特征结合的多聚焦图像融合[J].光电子激光,2019,30(4):442~450

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-28
  • 出版日期:
文章二维码