基于TSVD-SCN的光纤入侵信号识别算法研究
DOI:
CSTR:
作者:
作者单位:

(北方工业大学电子信息工程学院,北京 100144)

作者简介:

盛智勇(1979-),男,浙江省人,工程硕士、讲师,研究方 向为电子电路和机器学习.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61571014)和北京自然科学基金(4172017)资助项目 (北方工业大学电子信息工程学院,北京 100144)


A recognition algorithm of optical fiber intrusion signals based on TSVD-SCN neural network
Author:
Affiliation:

(College of Electronic and Information Engineering,North China University of Tec hnology,Beijing 100144,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用随机配置网络(SCN,Stochastic configurat ion network)对光纤振动信号进行识别,常由于光 纤预警系统的背景噪声问题使得网络的隐含层输出接近奇异,直接影响了SCN对光纤数据的 识别准确率。 因此本文提出了一种基于截断奇异值分解(Truncated singular value decomposition,TS VD)的SCN 方法(TSVD-SCN) 对光纤入侵信号进行识别。TSVD-SCN通过对网络的隐含层输出进行SVD分解并设置阈值去 除其中较小的 奇异值,以减少隐含层输出矩阵的条件数,提升网络识别率。本文利用占空比,平均幅差函 数,FFT求能 量占比的方法进行特征提取,采用基于TSVD-SCN算法对不同入侵振动特征矢量进行分类识 别。实验证明, 本文所提算法模型精度比SCN的模型精度更高,可以准确识别光纤入侵信号类型,对SCN网 络在实际应用中对分类精度的提高有着重要意义。

    Abstract:

    Because of the background noise problem of optical fiber early warning system,the hidden layer output of the network is close to singularity,and the recognition accurac y is low when Stochastic configuration Network (SCN) is used to identify the optical fiber vib ration signal.Therefore,a SCN method (TSVD-SCN) based on the Truncated singular value decomposition (TSVD-SCN) is proposed in this paper to identify the optical fiber intrusion si gnals.TSVD-SCN performs SVD decomposition on the hidden layer output of the network and sets th resholds to remove the smaller singular value,reducing the condition number of the output matrix o f the hidden layer, and improving the network recognition rate.This paper utilizes the function of d uty cycle,average magnitude difference function and the frequency domain energy ratio are used to extract the different intrusion features of multiplex signal,respectively.The classificatio n of the feature vectors for different intrusion vibrations is realized by using the TSVD-SCN al gorithm. Experimental results show that the proposed algorithm has higher accuracy than t hat of SCN model, and can accurately identify the type of optical fiber intrusion signal.It is si gnificant to improve the classification accuracy of SCN network in frequency domain.

    参考文献
    相似文献
    引证文献
引用本文

盛智勇,孙成斌,张远.基于TSVD-SCN的光纤入侵信号识别算法研究[J].光电子激光,2019,30(5):494~502

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-06-28
  • 出版日期:
文章二维码