基于子模式下LBP-HOG特征融合的单样本人脸识别方法
DOI:
CSTR:
作者:
作者单位:

(天津理工大学 计算机视觉与系统教育部重点实验室和天津市智能计算及软件新技术重点 实验室,天津 300384)

作者简介:

马振(1992-), 男, 天津人, 硕士研究生, 研究方向为图形图像 处理.

通讯作者:

中图分类号:

基金项目:

天津市教委科研重点项目(2017ZD13)]资助项目 (天津理工大学 计算机视觉与系统教育部重点实验室和天津市智能计算及软件新技术重点 实验室,天津 300384)


A single sample face recognition method based on LBP-HOG feature fusion in subm ode
Author:
Affiliation:

(Key Laboratory on Computer Vision and System,Ministry of Education of China, the Key Laboratory on Intelligence Computing and Novel Software Technology of th e City of Tianjin,Tianjin University of Technology,Tianiin 300384,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前单样本人脸识别率不高这一问题,本文 提出一种基于子模式下的分层LBP和 金字塔模式HOG特征相融合的单样本人脸识别方法。该方法针对人脸不同部位对人脸识别所 做贡献的程度,先通过已有人脸不同部位的分类器将人脸不同器官提取出来并以此为基准将 其分为不同的子图像。然后针对LBP描述子提取的纹理特征数量较少且不能很好的描述图像 边缘和方向信息等问题,将分层LBP与金字塔不同层级的HOG特征相融合的方法作用在每一个 子图像上,得到每一个子图像的融合特征向量,计算训练样本与测试样本对应的每一个子图 像的融合特征的欧氏距离并且乘上预先设定的该子图像对应的权重参数,然后将它们相加得 到最终的欧氏距离,通过阈值判断该人脸所属id。最后通过在ORL人脸库上进行实验,结果 表明本文提出的方法比现有单样本人脸识别方法识别率更高。

    Abstract:

    Aimed at the problem of single sample face recognition rate is not hig h,In order to improve the recognition rate of single sample face recognition,t his paper proposes a single sample face recognition method based on the combinat ion of layered LBP and HOG features of pyramid mode under submode.According to t he contribution of different parts of face to face recognition,this method firs tly extracts different parts of face through the existing classifier of differen t parts of face and divides them into different sub-images.Then,aiming at the p roblem that the number of texture features extracted by LBP descriptors is small and the image edge and orientation information cannot be well described,the me thod of fusion of layered LBP and HOG features at different levels of the pyrami d is applied to each sub-image to obtain the fusion feature vector of each sub -i mage,The Euclidean distance between the training sample and the fusion features of each sub-image corresponding to the test sample is calculated and multiplied by the pre-set weight parameters of the sub-image,then the final Euclidean di st ance is obtained by adding them together,and the id of the face is determined b y the threshold.Finally,the experiment on ORL face database shows that the prop osed method has a higher recognition rate than the existing single sample face r ecognition method,The recognition rate of ORL face database is up to 89%.

    参考文献
    相似文献
    引证文献
引用本文

马振,刘凤连,汪日伟.基于子模式下LBP-HOG特征融合的单样本人脸识别方法[J].光电子激光,2019,30(12):1309~1316

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-03-07
  • 出版日期:
文章二维码