基于MD-LinkNet的低质量文档图像二值化算法
DOI:
CSTR:
作者:
作者单位:

(1.湖北工业大学 电气与电子工程学院,湖北 武汉 430068; 2. 美国南卡罗来纳大学计算机科学与工程系,南卡 哥伦比亚 29201)

作者简介:

熊炜(1976-),男,湖北宜昌人,副教授,博士 ,主要研究方向为文档图像分析与理解、计算机视觉与模式识别.

通讯作者:

中图分类号:

基金项目:

国家留学基金项目(201808420418)、国家自然科学基金项目(61571182,7)和湖北省自然科学基金项目(2019CFB530)资助项目 (1.湖北工业大学 电气与电子工程学院,湖北 武汉 430068; 2. 美国南卡罗来纳大学计算机科学与工程系,南卡 哥伦比亚 29201)


Binarization of degraded document images based on MD-LinkNet neural networks
Author:
Affiliation:

(1.School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068; 2.Department of Computer Science and Engineering,University of South Carolina,Columbia,SC 29201,USA)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低质量文档图像存在的背景渗透、页面污渍 、边缘大面积与文本相似的噪声等 现象,改进D-LinkNet框架,提出了一种融合多尺度特征(multiple scale feature)的低 质量文档图像二值化算法,简称为MD-LinkNet。该算法有两处改进,一是在编解码中间部 分 增加剩余多核池化(RMP)模块来通过四个池化操作以提取丰富的文档特征信息;二是将池 化后的低分辨率图像通过DUpsample而不是双线性插值进行上采样,结合了文档图像像素邻 域信息,将文档图像的全局与局部特征进行融合,提高了分割精度。实验结果表明,在2017 年和2018年国际文档图像二值化竞赛(DIBCO)数据集中,本文算法 的F值(F-measure)最 高分别达到了90.54、91.42,验证了所提出算 法在解决 多种复杂噪声背景的低质量文档图像下的鲁棒性,且相比其他最新经典算法效果较优。

    Abstract:

    Aiming at the bleed through,page stains,text-like noise on the large area edges and so on,which occurred in the low quality document images,the D -LinkNet framework is improved,and a low quality document image binarizatin al g orithm combining with multiple scale features is proposed.We referred to as MD -LinkNet.The algorithm has two improvements based on the original network.One is to add the remaining multi-core pooling (RMP) module in the middle of the co d ec to extract rich document feature information through four pooling operations; the second is to pass the pooled low-resolution image through DUpsample instea d of bilinear interpolation performs upsampling,not only combines the pixel imag e neighborhood information of the document image,but also to fuses the global a nd local features of the document image to improve the segmentation precision.T he experimental results show that in the 2017and 2018International Document Im age Binarization Competition (DIBCO) dataset,the F-measure of the algorithm re a ches 90.54and 91.42respectively,the results of extensive experiments on many datasets show the robustness of the proposed technique on various types on degra dations in the document images where our technique demonstrates superior perform ance against many other state of art classcal methods.

    参考文献
    相似文献
    引证文献
引用本文

熊炜,贾锈闳,金靖熠,王娟,刘敏,曾春艳.基于MD-LinkNet的低质量文档图像二值化算法[J].光电子激光,2019,30(12):1331~1338

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-07-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-03-07
  • 出版日期:
文章二维码