视觉特征内推及深度融合的图像质量评价
DOI:
CSTR:
作者:
作者单位:

(浙江科技学院 信息与电子工程学院,浙江 杭州 310023)

作者简介:

丰明坤(1978-),男,河南延津人.博士,讲师 ,主要从事信息智能感知处理方向的研究.

通讯作者:

中图分类号:

基金项目:

浙江省基础公益研究计划(LGF18F020010)资助项目 (浙江科技学院 信息与电子工程学院,浙江 杭州 310023)


Image quality assessment based on internal generating and deeply pooling of visu al feature
Author:
Affiliation:

(School of Information and Electronic Engineering,Zhejiang University of Scie nce and Technology,Hangzhou 310023,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人类视觉系统(HVS)特性在图像质量评价 研究中的不足,提出一种将HVS前端 感知特性和后端内推特性联合起来的图像质量评价方法。图像首先经由HVS前端感知特性提 取视觉多通道梯度特征显著图,然后再经由HVS后端内推机制对各视觉通道梯度特征信息进 行深度分解。针对HVS多通道评价的池化问题,构建BP神经网络预测模型,对基于三层视觉 梯度特征的多通道评价分别进行了融合。最后,通过设计自适应回归算法对各层视觉梯度特 征的模型融合评价从内层到外层逐层地进行了二次深度融合。实验结果表明,所提融合模型 明显提高了各个客观算法的各项评价指标水平,其中,均方根误差(root mean squared er ror,RMSE)小于3.4153,皮尔逊线性相关系数(pearson linear corr e lation coefficien t,PLCC)大于0.9900,斯皮尔曼排序相关系数(spearman rank order correlation coeff icient,SROCC)大于0.9725,所提方法的各项评价指标相对现有方法 具 有更高的水平和更好的稳定性。

    Abstract:

    Aiming at the research shortcoming of Human Vision System (HVS) for Im age Quality Assessment(IQA),a method of IQA combing front perception and back internal generating of HVS characteristic is proposed.Gradient feature informat ion of every visual channel is deeply decomposed based on the back Internal Gene rative Mechanism (IGM) of HVS after gradient feature salience maps of all visual channels for an image are extracted based on front perception characteristic of HVS.In order to overcome pooling problem of multi-channel assessment,a model of visual multi-channel pooling for IQA based on BP neural network is construct e d and used to pool multi-channel gradient feature assessment of three visual la y er,respectively.Finally,model pooling assessment of every visual gradient fea ture layer is deeply pooled from the inner layer to the outer layer by designing adaptive regression algorithm.Experiment results show that the proposed poolin g model obviously improves the assessment indexes′ level of each objective algo rithm.Among them,the root mean square error (RMSE) is less than 3.4153,the Pe arson linear correlation coefficient (PLCC) is greater than 0.9900,and the Spea rman rank order correlation coefficient (SROCC) is greater than 0.9725.The asse ssment indexes of the proposed method hold higher level and better stability tha n the existing methods.

    参考文献
    相似文献
    引证文献
引用本文

丰明坤,施祥,唐伟,李晓勇.视觉特征内推及深度融合的图像质量评价[J].光电子激光,2019,30(12):1339~1347

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-07-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-03-07
  • 出版日期:
文章二维码