基于边界增强损失的海马体分割算法
DOI:
CSTR:
作者:
作者单位:

(西南交通大学 信息科学与技术学院 成都 611756)

作者简介:

和红杰(1971-),女,河南平顶山人,教授,博士生导师,主要从 事图像处理、信息隐藏等方面研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61872303);四川省科技厅科技创新人才计划(2018RZ0143)资助 项目 (西南交通大学 信息科学与技术学院成都 611756)


Hippocampus segmentation with boundary enhanced loss
Author:
Affiliation:

(College of Information Science and Technology,Southwest Jiaotong University, Chengdu 611756,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    快速准确地获得脑部核磁共振图像中海马体的体 积变化情况,对阿尔兹海默症等疾病 的诊断具有重要意义。海马体在大脑中占比很小且与周边结构的边界不明显,使得基于深度 学习的核磁共振影像海马体分割具有一定难度。针对上述问题本文提出一种利用边界增强损 失训练含注意力机制网络的海马体分割算法,主要贡献在于:1) 设计了一种含注意力机制 的U形三维卷积神经网络; 2) 提出一种边界增强的损失函数。在解决海马体与背景因为尺 寸 相差过大而带来的类不平衡问题的同时,使网络在训练时更注重对海马体边界的学习。在欧 洲阿尔兹海默病协会和阿兹海默症神经影像学倡议数据集上,分析讨论了本文提出的损失函 数和网络结构的性能。与目前几种先进的基于深度学习的三维分割算法进行了对比分析,实 验结果表明本文提出的算法性能更优,达到了89.41%的Dice精度与人 工分割精度相近。

    Abstract:

    Rapid and accurate acquisition of hippocampal volume changes in brain M RI images is of great significance for the diagnosis of diseases such as Alzheim er′s disease.The proportion of hippocampus in the brain is small and its bounda ry with the surrounding structure is not obvious,which makes the hippocampus se gmentation in nuclear magnetic resonance imaging based on deep learning difficul t.Aiming at these two problems,a hippocampal segmentation algorithm based on b oundary-enhanced loss training mechanism with attention mechanism is proposed. T he main contributions are as follows:1) A U-shaped three-dimensional convoluti on al neural network with attention mechanism is designed; 2) A boundary-enhanced l oss function is proposed to solve the problem of imbalance between the hippocamp us and the background because of the large difference in size.At the same time, the network pays more attention to the learning of the hippocampus boundary dur ing training.On the European Alzheimer′s Disease Association and the Alzheimer ′ s Neuroimaging Initiative dataset,the performance of the loss function and netw ork structure proposed in this paper are analyzed and discussed.Compared with s everal advanced deep learning-based 3D segmentation algorithms,the experimenta l results show that the proposed algorithm performs better,and the Dice accuracy of 89.41% is similar to the manual segmentation accuracy.

    参考文献
    相似文献
    引证文献
引用本文

颜宇,陈帆,和红杰.基于边界增强损失的海马体分割算法[J].光电子激光,2020,31(3):299~309

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-29
  • 出版日期:
文章二维码