高光谱成像技术对牛肉水分含量及分布的快速检测
DOI:
CSTR:
作者:
作者单位:

(1.宁夏大学农学院,宁夏 银川 750021; 2.宁夏尚农生物科技产业发展 有限公司,宁夏 固原 756000)

作者简介:

王松磊(1982-),男,河南人,副教授,博士研究生,主要从 事农产品无损检测方面的研究.

通讯作者:

中图分类号:

基金项目:

自治区重点研发计划项目:宁夏固原冷凉区牛肉品质形成调控及分级评估体系建立(2019BEH 03002)、中央则政支持地方高校改革发展资金—食品学科建设项目(2017)和宁夏高校科研基金(NGY2016018) 资助项目 (1.宁夏大学农学院,宁夏 银川 750021; 2.宁夏尚农生物科技产业发展 有限公司,宁夏 固原 756000)


Rapid detection of beef moisture content and distribution by hyperspectral imagi ng
Author:
Affiliation:

(1.School of Agriculture,Ningxia University Yinchuan 750021,China; 2.Ningxia Shangnong Biotechnology Industry Development Limited Company,Guyuan 756000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用可见/近红外高光谱成像技术对牛肉水分含量 及分布进行快速检测。采用可见/ 近红外高光谱成像系统(400000 nm)采集150个黄牛肉样本的高光谱图像,利用ENVI软件 提取样本感兴趣区域(ROI)并计算平均光谱值;对原始光谱数据进行预处理并利用连续投 影算法(SPA)、竞争性自适应重加权算法(CARS)和无信息变量消除算法(UVE)进行特征 波长提取,建立基于不同特征波长的偏最小二乘回归(PLSR)模型,进而优选牛肉水分含量 预测的最优模型。通过蒙特卡罗交叉验证法剔除26个异常样本值;经卷积平滑(Smoothing - SG)法预处理后的原始光谱数据所建PLSR模型效果较好,其校正集决定系数(R2c)与预测集 决定系数(R2p)分别为0.817、0.850;利用CAR S、SPA、UVE法分别优选出12、27、27个特征 波长;对比基于全波段光谱与特征波段光谱所建PLSR牛肉水分预测模型的优劣,结果显示基 于CARS-PLSR法建立的牛肉水分预测模型效果最好,其R2c 、R2p值分别为0.814、 0.750,校 正集均方根误差(RMSEC)与预测集均方根误差(RMSEP)分别为0.477、0.555;最后,利用CARS -PLSR模型计算牛肉样本每个像素点的水分含量并利用伪彩色图对牛肉样本水分分布进行可 视化分析,进而实现牛肉水分含量的快速检测及分布的可视化表达。该研究结果可为黄牛肉 水分含量的快速检测提供理论支撑。

    Abstract:

    The visible/near-infrared hyperspectral imaging technique was used to rapidly detect the moisture content and distribution of beef.Hyperspectral imag es of 150yellow cattle samples were collected using a visible near-infrared hy p erspectral imaging system (400-1000nm),and the region of interest (ROI) of th e samples was extracted using ENVI4.8software and the average spectral values we re calculated; The raw spectral data is preprocessed and the feature wavelength extraction is performed by using continuous projection algorithm (SPA),competit ive competitive reweighting (CARS) and non-information variable elimination alg o rithm (UVE),and the characteristic wavelengths are extracted.Partial Least Squ ares Regression (PLSR) model was preferably the best predictive model.A total o f 26abnormal samples were eliminated by Monte Carlo cross-validation; the PLSR model constructed by spectral data pre-processing by convolution smoothing (SG) method was relatively good,with R2c of 0.817and R 2p of 0.850; using CARS and S PA The UVE method preferably has 12,7,and 27characteristic wavelengths; The PLSR model established by the full-band spectrum and the extracted characterist i c band spectrum is compared.The results show that the CARS-PLSR model based on hyperspectral imaging technology has the best effect,and the R2c,R2p values ar e 0.814,0.750,respectively.RMSEC and RMSEP values of 0.477and 0.389,respect ively; The CARS-PLSR model was selected to calculate the moisture content of ea c h pixel of the beef sample.The pseudo-color map was used to visualize the mois t ure content distribution of the beef sample,and the non-destructive detection o f the moisture content of the beef and the visual expression of the distribution were realized.Detection provides theoretical support.

    参考文献
    相似文献
    引证文献
引用本文

禹文杰,王彩霞,乔芦,贺晓光,何智武,王松磊.高光谱成像技术对牛肉水分含量及分布的快速检测[J].光电子激光,2020,31(3):326~333

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-29
  • 出版日期:
文章二维码