基于高光谱成像技术的土壤盐分含量检测
DOI:
CSTR:
作者:
作者单位:

(1.宁夏大学 农学院,银川 750021; 2.宁夏食品检测研究院,银川 750001)

作者简介:

李建设(1963-),男(汉族),河北人,教授,博士生导师,主要从事设施园艺、蔬菜栽培生理生态、无土栽培方面的研究.

通讯作者:

中图分类号:

基金项目:

宁夏自然基金项目(2019AAC03057)和宁夏大学自然科学基金项目(ZR18013)项目资助项目 (1.宁夏大学 农学院,银川 750021; 2.宁夏食品检测研究院,银川 750001)


Study on the diagnosis mechanism of soil salinity based on hyperspectral imagin g technique
Author:
Affiliation:

(1.School of Agriculture,Ningxia University,Yinchuan 750021,China; 2.Institute of Food Testing and Research,Yinchuan 750001,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用NIR高光谱仪(光谱范围900~1700nm)对土壤含 盐量进行了无损检测,对比分析不同含盐量土壤的水分变化情况、不同时间下土壤光谱曲线 的差异。结果表明,随着土壤中含盐量的增加,土壤中水分蒸发情况受到的影响程度不同, 从而使得不同含盐量土壤的反射率存在明显的规律;在此基础上,对比分析了不同预处理方 法,优选出原始光谱;利用多元线性回归(multiple linear regression,MLR)、主成分回归 (principal component regression,PCR)与偏最小二乘回归(partial least squares regre ssion,PLSR)方法对900700 nm范围的特征波长建立模型,对比分析不同建模效果,优选β系数提取的特征波长的P LSR模型,特征波长为936、1016136、 1151186273395425458535642 nm,最优模型的预测相关系数为0.949,预测均方根误差为2.914 g/kg。因此,今后可采用 不同波段对土壤含盐量进行定量分析,为今后表层土壤含盐量遥感预测奠定基础。

    Abstract:

    This article summarizes a near-infrar ed hyperspectral imaging technique was investigated for non-destructive determi nation of soil salinity,and the changes of soil moisture and soil spectral curve s on different days were compared and analyzed.The results show that the evapora tion of soil water is affected to different degrees with the increase of soil sa linity,so that the reflectance of soil with different salinity exists an obvious rule.On this basis,different pretreatment methods were compared and analyzed to optimize the original spectrum.MLR,PCR and PLSR modeling were used to optimize the best model for feature wavelengths.Compared with different modeling effects, optimize the PLSR model of characteristic wavelength extracted by β coefficient was obtained.The optimal characteristic wavelengths are 936,6,1016,1136,1151,1186,1273,1395,1425,1458,1535,1642nm,respectively.The prediction coefficient Rp is 0.949,and the RMSEP is 2.914g/kg.Therefore,soil salinity can be quantitat ively analyzed by different bands,which lays a foundation for remote sensing pre diction of soil salinity in the future.

    参考文献
    相似文献
    引证文献
引用本文

吴龙国,张瑶,王松磊,李建设.基于高光谱成像技术的土壤盐分含量检测[J].光电子激光,2020,31(4):388~394

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-29
  • 出版日期:
文章二维码