基于深层特征学习的可压缩感知及缝雕刻的图像重定向
DOI:
CSTR:
作者:
作者单位:

(宁波大学 信息科学与工程学院,浙江 宁波 315211)

作者简介:

邵枫(1980-)男,浙江杭州人,博士,教授,主要从事三 维视频信号编码与质量评价方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61622109)资助项目 (宁波大学 信息科学与工程学院,浙江 宁波 315211)


Compressive perception and seam carving image reretargeting based on deep featur e learning
Author:
Affiliation:

(Faculty of Information Science and Engineering Ningbo University,Ningbo Zhejia ng,315211)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多媒体技术的飞速发展推动了图像处理与显示设备 的应用与发展,为了使图像在不同的设备上进行最佳显示,需要对图像的尺寸进行调整。因 此,本文提出一种基于深层特征学习的可压缩感知及接缝雕刻的图像重定向方法。首先从预 先训练的VGG-19网络中提取输入图像的深度特征图,从最深层开始 计算特征图像的可压缩率,根据计算的可压缩率运用接缝雕刻的方法在特征域(Feature fie lds Seam Carving,FSC)调整特征图的大小,然后依次向较浅的层传播,得到所有特征层的 重定向图像后,将输入图像对应于第一层特征图的去缝的位置处的像素去掉,得到原始图像 的重定向图像。若没有达到目标图像的大小,最后再进行均匀缩放(scaling,SCL)。在Retar getMe数据集上分别进行主观与客观评估,结果表明,与其他方法相比,本文的重定向方法 总体上实现了更好的性能。

    Abstract:

    The rapid development of multimedia te chnology has promoted the application and development of image processing and di splay devices.In order to make images optimally displayed on different devices,i t is necessary to adjust the size of the image.Therefore,this paper proposes an image retargeting method based on compressible sensing and seam carving based on deep feature learning.First,extract the feature map of the input image from the pre-trained VGG-19network,calculate the compressibility of the feature image from the deepest layer,and apply the seam carving method on feature fields (FSC ) according to the calculated compressibility to adjust the size of the feature map,and then propagate to the shallow layer in turn to obtain the retargeted ima ge of all the feature layers,and then the pixels at the positions where the inpu t image corresponds to the unstitched portion of the first layer feature image a re removed,and a retargeted image of the original image is obtained.If the size of the target image is not reached,the final scaling is performed.Subjective and objective evaluations were performed on the RetargetMe dataset respectively.The results show that,compared with other methods the retargeting method of this pa per achieves better performance overall.

    参考文献
    相似文献
    引证文献
引用本文

李恬,柴雄力,吕晓文,邵枫.基于深层特征学习的可压缩感知及缝雕刻的图像重定向[J].光电子激光,2020,31(5):519~530

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-07-24
  • 出版日期:
文章二维码