基于FCM-KNN的相干光环形QAM系统符号判决优化
DOI:
CSTR:
作者:
作者单位:

(1.浙江工业大学 信息工程学院,浙江 杭州 310023; 2.上海交通大学 区域光纤通信网与 新型光通信系统国家重点实验室,上海 200240)

作者简介:

卢瑾(1982-),女,浙江温岭人,历任 浙江工业大学实验师、讲师,主要从事通信信号处理方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61675184,3,61405178)、浙江省自然科 学基金(LY20F050009)和上海交通大学区域光纤通信网与新型光通信系统国家重点实验室开放基金(2020GZKF013)资助项目 (1.浙江工业大学 信息工程学院,浙江 杭州 310023; 2.上海交通大学 区域光纤通信网与 新型光通信系统国家重点实验室,上海 200240)


Performance improvement of coherent optical circular 16-QAM system by optimizin g symbol decision boundary based on FCM-KNN algorithm
Author:
Affiliation:

(1.College of Information and Engineering,Zhejiang University of Technology,Ha ngzhou,Zhejiang 310023,China; 2.State Key Laboratory of Advanced Optical Communi cation Systems and Networks,Shanghai Jiao Tong University,Shanghai,200240,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高阶环形正交幅度调制 (QAM)的相干光通信 系统,提出了一种模糊C均值算法和K 最近邻算法相结合的非线性均衡算法。对接收端经相位噪声补偿后的数据,先用FCM算法有 效剪裁训练数据,同时对测试数据进行分类判决,从而极大降低了后续KNN算法的计算复杂 度。即首先计算训练集的初始质心和各数据点的初始隶属度,经过迭代计算收敛后,得到最 终的质心和各数据点的隶属度。然后将质心隶属度大于某阈值的测试数据点作为训练数据, 计算各测试数据与各训练集质心的距离对其暂时分类,接下来进行KNN算法分类。同时对测 试集进行分类判决,即对距该质心距离低于阈值的测试数据根据欧式距离直接判决,大于阈 值的测试数据用以上KNN方法进行判决。该算法基于112 Gbit/s单载 波单偏振相干检测环形16QAM单载波系统传输距离为1040 km进行了非线 性均衡效果仿真验证。仿真结果表明,本文所 提出的FCM-KNN算法可取得和KNN算法几乎相同的非线性均衡效果,而其复杂度比后者可降 低近20倍,对高阶QAM相干光通信系统长距离传输具有重要意义。

    Abstract:

    A nonlinear equalization algorithm has been proposed through combining fuzzy c-means (FCM) algorithm and K-nearest neighbor (KNN) in coherent optical s ystem with high-order quadrature amplitude modulation (QAM).After performing p h ase recovery at the receiver,a certain number of the training data are tailored by FCM algorithm,and the test data are classified to make decision,which redu ce the computational complexity greatly in subsequent KNN algorithm.The initial centroid and membership grade are firstly calculated for the original training data.After several iterations,the ultimate centroid and membership grade are o btained.The data point is adopted as the tailored training data when its member ship grade is larger than the threshold,and the test point is temporarily class ified according to the distance between it and the centroids.Subsequently,the KNN algorithm is performed to obtain the final classification results.For a 28G baud single carrier single polarization circular 16quadrature amplitude modulat ion (16-QAM) coherent transmission system with 1040km trans mission distance,the numerical simulations have been performed in order to investigate the nonlinear equalization performance of the proposed FCM-KNN algorithm.It is proved by th e simulation results that the FCM-KNN scheme shares the same performance with th e KNN algorithm,and moreover its computational complexity is twenty times less t han that of KNN algorithm,which benefits greatly to the application of coherent optical QAM transmission technology in long distance optical fiber transmission .

    参考文献
    相似文献
    引证文献
引用本文

卢瑾,任宏亮,郭淑琴,覃亚丽,胡卫生.基于FCM-KNN的相干光环形QAM系统符号判决优化[J].光电子激光,2020,31(6):575~586

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-09-29
  • 出版日期:
文章二维码