基于方差选择和高斯朴素贝叶斯的草地牧草高光谱图像识别研究
DOI:
CSTR:
作者:
作者单位:

(1. 内蒙古农业大学 计算机与信息工程学院,呼和浩特 010018; 2. 中国农业科学院草原 研究所,呼和浩特 010020)

作者简介:

潘新(1974-),女,山东省即墨市人,博士,教授,主要从事模 式识别与图像处理方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61962048,61562067)资助项目 (1. 内蒙古农业大学计算机与信息工程学院,呼和浩特 010018; 2. 中国农业科学院草原研究所,呼和浩特 010020)


Research on grassland forage hyperspectral image recognition based on variance s election a nd Gaussian Naive Bayes
Author:
Affiliation:

(1.College of Computer and Information Engineering,Inner Mongolia Agricultural University,Hohhot,Inner Mongolia 010018,China; 2.Grassland Research Institute of Chinese Academy of Agricultural Sciences,Huhhot,Inner Mongolia 010020,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,草地调查和监测工作中主要基于卫星遥 感光谱图像,但其整体分辨率略 低、成本高,具有一定的局限性。而近距离获取的高分辨率高光谱图像可弥补图像分辨率较 低的缺陷,目前研究较少。因此,本研究通过结合高光谱成像技术和机器学习,提出了一种 基于方差选择与高斯朴素贝叶斯的草地牧草高光谱图像快速准确识别方法。首先,利用高光 谱成像系统采集可见-近红外光谱(400000 nm)的草地高光谱图像,通过基于方差选择的 降维方法优化特征中的有效信息;然后,采用高斯朴素贝叶斯(gaussian naive bayes,Gau ssianNB)和支持向量机(support vector machine,SVM)并结合K折交叉验证法分别建立识别 模型;最后,通过Kappa系数、OA、测试时间等指标进行模型评价。预处理环节中对比多元 散射校正(MSC)、标准正态变量变换(SNV)、归一化(normalize)、Savitzky-Golay平滑滤波 (SG)和移动窗口平滑光谱矩阵(nirmaf)5种方法,其中MSC预处理提高信噪比和保障预测模 型的精度与稳定性最优。特征选择与提取中,采用基于方差选择的主成分分析白化(V-pcaw )法,根据阈值和主成分选择最佳特征变量数为2,与主成分分析(PCA)法比较,总体分类精度 和Kappa系数平均值分别提高2.995%和0.050。同等情况下比较GaussianNB模型和SVM模型, 在GaussianNB模型中,经MSC处理的牧草光谱在V-pcaw特征提取后识别效果最佳,耗时最少 ,OA值达到99.33%,Kappa系数为0.99,测试 时间为0.002022 s。研究结果表明,基于方差 选择与高斯朴素贝叶斯的方法可有效增强草地牧草高光谱图像的特征表达能力,从而实现高 效快速的牧草种类识别。

    Abstract:

    In recent years,grassland survey and monitoring is mainly based on sa tellite remote sensing spectral images,but the low resolution and high cost lim it its applications.The high-resolution hyperspectral images obtained at a clos e range can make up for the lower resolution of remote sensing,which is current ly less studied.Therefore,in this study,we propose an efficient and accurate identification method for grassland forage hyperspectral images based on varianc e selection and Gaussian Naive Bayes,integrating hyperspectral imaging technolo gy with machine learning.First,hyperspectral images of grassland and visible-n ear infrared spectrum (400~1000nm) were collected using a hy perspectral imagin g system,the effective information in the features was optimized by the dimensi onality reduction method based on variance selection.Then,Gaussian naive bayes (Gaussian NB) and support vector machine (SVM) were used to establish the recogn it ion models with the K-fold cross-validation method.Finally,the model was evalu ated by Kappa coefficient,OA,test time and other indicators.In the preprocess ing phase,five methods were compared:multiplicative scatter correction (MSC), standard normal variable transformation (SNV),normalization,Savitzky-Golay smo othing filter (SG),and moving window smoothing spectral matrix (Nirmaf).Among them,MSC preprocessing improves the signal-to-noise ratio and guarantees the a ccuracy and stability of the prediction model.In feature selection and extractio n,the principal component analysis whitening based on variance selection (V-pca w) method was adopted,and number of optimal feature variables was set 2based o n the threshold and principal component.Compared with the principal component a nalysis (PCA),V-pcaw′s average of the overall classification accuracy and Kapp a coefficient increased by 2.995% and 0.05025,respectively.In the sa me case,the GaussianNB model and the SVM model are compared.In the GaussianNB mo del,the grass spectrum processed by MSC has the top recognition performance afte r V-pcaw feature extraction with the least running time. The values of OA,Kappa coefficient and test time are 99.33%,0.99and 0.002022s,resp ectively.The results showed that the algorithm based on variance selection and G aussian Naive Bayes enhanced the feature expression ability of hyperspectral ima ges of grassland forage effectively.and thus high efficient indentification of f orage species could be realized.

    参考文献
    相似文献
    引证文献
引用本文

赵烜赫,潘新,闫伟红,马玉宝.基于方差选择和高斯朴素贝叶斯的草地牧草高光谱图像识别研究[J].光电子激光,2020,31(7):688~695

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-31
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-10-21
  • 出版日期:
文章二维码