基于改进YOLOv3算法在垃圾检测上的应用
DOI:
CSTR:
作者:
作者单位:

(浙江理工大学 机械与自动控制学院,浙江 杭州 310018)

作者简介:

许伟(1994-),男,安徽合肥人,硕士研究生,主要从事目标检测和垃圾识别方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61803339)和浙江省重点研发计划项目(2019C03096)资助项目 (浙江理工大学 机械与自动控制学院,浙江 杭州 310018)


Application of garbage detection based on improved YOLOv3algorithm
Author:
Affiliation:

(Zhejiang Sci-Tech University,Faculty of Mechanical Engineering and Automation ,Zhejiang 310018,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现阶段我国主要靠人工对垃圾进行分拣,存在安全 系数低、效率低下等问题。传统目标检测方法针 对种类繁多,形态各异的垃圾目标不易设计特征,鲁棒性较差,为实现自然环境下垃圾的快 速精准识别, 本文提出一种基于深度学习的轻量级垃圾分类检测方法。该方法通过引入CIOU边框回归损 失函数来提高 回归框准确率;针对低功耗移动设备终端的部署,提出一种以YOLOv3目标检测算法为基础 ,结合 MobileNetV3的特征提取网络,对算法进行轻量化;在YOLO层加入GRU结构,利用多门控 循环神经网 络结构对YOLO层中不同大小的特征图建立记忆链接,对深层语义特征的向前融合过程进行 过滤和筛选, 使得特征融合效果更佳;使用迁移学习预训练的方式来提高模型的特征提取能力和泛化能力 。文本采用自 制的Garbage数据集对改进后的网络进行训练和测试,结果表明,本文提出的算法识别效果 显著,平均准 确率为90.50%,高于原YOLOv3网络的平均准确率86.30%,检测速度达到18帧/秒,满足实时检测的 需求。实验表明,改进后的网络模型能在保证检测准确率和速度的同时,有效降低模型参数 量,具有一定应用价值。

    Abstract:

    At present,China mainly relies on manu al sorting of garbage,which ha s problems such as low safety factor and low efficiency.Traditional target detection methods are difficult to design features for a wide variety of garbage targets with different shapes,and have poor robustness.In order to ach ieve rapid and accurate garbage identification in natural environments,this paper proposes a lightweight garbag e classification and detection method based on deep learning.This method improves the accuracy of the regress ion frame by introducing the CIOU frame regression loss function;for the deployment of low-power mobile dev ice terminals,a YOLOv3target detection algorithm is proposed based on the feature extraction network of Mobil eNetV3to lighten the algorithm; The GRU structure is added to the YOLO layer,and the multi-gated recurrent neu ral network structure is used to establish memory links for feature maps of different sizes in the YOLO layer,an d to filter and screen the forward fusion process of deep semantic features to make the feature fusion effect bette r; use Transfer learning pre-training is used to improve the feature extraction ability and generalization ability of the model.The text uses the self-made Garbage data set to train and test the improved network.The results show that t he algorithm proposed in this paper has a significant recognition effect,with an average accuracy rate of 90.50%,w hich is higher than the original YOLOv3network′s average accuracy rate of 86.30%,and the detection speed is up to 18frames per second, meeting the needs of real-time detection.Experiments show that the improved ne twork model can effectively reduce the amount of model parameters while ensuring the detection accuracy and speed,which has certain application value.

    参考文献
    相似文献
    引证文献
引用本文

许伟,熊卫华,姚杰,沈云青.基于改进YOLOv3算法在垃圾检测上的应用[J].光电子激光,2020,31(9):928~938

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-10
  • 出版日期:
文章二维码