注意力残差链式融合的彩色眼底图像硬性渗出检测
DOI:
CSTR:
作者:
作者单位:

(宁波大学 信息科学与工程学院,浙江 宁波 315211)

作者简介:

金炜(1969-),男,浙江兰溪人,博士,教授,主要从事 压缩感知和数字图像处理方面研究.

通讯作者:

中图分类号:

基金项目:

浙江省自然科学基金(LY20H180003)和宁波市自然科学基金(2019A610104)资助项目 (宁波大学 信息科学与工程学院,浙江 宁波 315211)


Hard exudation detection of color fundus images with chained fusion of attention al residua
Author:
Affiliation:

(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    硬性渗出物(Hard Exudate,HE)对糖尿病视网膜病 变(Diabetic Retinopathy,DR)的早期诊断具有重要意义,从彩色眼底图像中准确检测出HE 是诊断和筛查DR的重要步骤。针对以往自动检测方法中存在的分割效果不佳和对小目标误检 率高的问题,本文在经典U-Net生成网络的基础上,引入注意力残差链式融合机制,构造出 一种适用于视网膜HE检测的注意力残差链式融合生成对抗网络(Chain fusion of attention residuals GAN,CFAR-GAN)。该网络在生成网络编码过程的每个子模块后添加一个残差网 络(Residual Network,ResNet)结构,并采用带有残差连接的卷积层链(Residual convolut ional layer path,Res path)建立不同层间的跳跃连接,同时将全局最大池化注意力机制 用于刻画不同深度特征的权重,以防止训练过程的过拟合从而提高网络的泛化能力。将CFAR -GAN用e-ophtha EX数据库的训练集进行训练,在其测试集上,检测敏感性、PPV和F-sco re分别为92.5%、88.7%和90.6%;将训练好的网络在另一个独立的DIARETDB1数据库上进行测试,敏感性、特异性和 准确性分别为100%、98.5%和99.1%,表明本文所提出的方法具有 理想的泛化能力,这对于准确高效地检测眼底图 像中的HE,实现DR早期的自动诊断具有积极 意义。

    Abstract:

    Hard exudate (HE) is of great importan ce for the early diagnosis of diabetic retinopathy (DR),and the accurate detecti on of HE from the fundus image is an important step in the diagnosis and screeni ng of DR.To solve the problems of poor segmentation effect and high false detect ion rate of small targets in previous automatic detection methods,based on the c lassic U-Net generation network,this paper introduces the chain fusion mechanis m of attention residuals,and constructs a chain fusion of attention residuals ge neration countermeasures network (CFAR-GAN) suitable for retinal HE detection.A network in the generated code after each module of the process of adding a resi dual network (ResNet) structure,and uses the convolution with residual connectio n layer chain (Res path) jump between different layers of connections,at the sam e time the global biggest pooling attention mechanism is used for depicting the weight of different depth characteristics,in order to prevent the training proce ss of the fitting so as to improve the generalization ability of the network.CFA R-GAN was trained with the training set of e-ophtha EX database.In the test se t,the detection sensitivity,PPV and F-score were 92.5%,88.7% and 90.6%,respecti vely.The trained network was tested on another independent DIARETDB1database,an d the sensitivity,specificity and accuracy were 100%,98.5% and 99.1%,respectivel y,indicating that the method proposed in this paper has ideal generalization abi lity,which is of positive significance for accurate and efficient detection of H E in fundus images and early automatic diagnosis of DR.

    参考文献
    相似文献
    引证文献
引用本文

陈志远,金炜,李纲.注意力残差链式融合的彩色眼底图像硬性渗出检测[J].光电子激光,2020,31(10):1044~1053

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-22
  • 出版日期:
文章二维码