智能装配中基于YOLO v3的工业零件识别算法研究
DOI:
CSTR:
作者:
作者单位:

(天津理工大学 计算机视觉与系统教育部重点实验室和天津市智能计算及软件新技术重点实 验室,天津 300384)

作者简介:

张静(1994-),女,山西阳泉人,硕士研究生,研究方向 为图像处理与计算机视觉方面的研究.

通讯作者:

中图分类号:

基金项目:

天津市教委科研重点项目(2017ZD13)资助项目 (天津理工大学 计算机视觉与系统教育部重点实验室和天津市智能计算及软件新技术重点实验室,天津 300384)


Research on industrial parts recognition algorithm based on YOLO v3in intellige nt assembly
Author:
Affiliation:

(Key Laboratory on Computer Vision and Systems,Ministry of Education of China, the Key Laboratory on Intelligence Computing and Novel Software Technology of th e City of Tianjin,Tianjin University of Technology,Tianjin,300384,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统装配系统中依靠人力进行重复性劳动,容易 由于人的操作具有疲劳性和人眼分辨 率有限等特点造成失误,为了避免浪费人工和时间,解决工厂环境中光线等不稳定因素,提 出了一种基于YOLO v3算法对形状多样的工业零件识别方法。在智能装配系统中根据视觉检 测结果判断零件种类,弥补了传统方法的不足,满足产品生产系统的节拍要求。改进后的YO LO v3网络模型使用k-means算法重新聚类预选框的参数,残差网络来减少网络的参数,结 合 多尺度方法、采用Mish激活函数提高精确度,使其更适合工业零件的小目标分类检测。该模 型以3D打印的工业零件制作数据集,实验表明与原有的YOLO v3算法对比,使用改进后的网 络模型具有良好的鲁棒 性,准确率提高了1.52%,时间提高了7.25 ms,实现精确实时地检测出智能装配系统中的零件种类。

    Abstract:

    The traditional assembly system relies on manual labor for repetitive labor,which is easy to cause errors due to the fatigue and limited human eye re solution of human operations.In order to avoid wasting labor,time and solve un stable factors such as light in the factory environment,it is proposed a method for recognizing industrial parts with various shapes based on YOLO v3algorithm .In the intelligent assembly system,the types of parts are judged based on the visual inspection results,which makes up for the shortcomings of the tradition al methods and meets the beat requirements of the product production system.The improved YOLO v3network model uses the k-means algorithm to cluster the param e ters of the anchor box,and the residual network to reduce the network parameter s.Combined with the multi-scale method and the Mish activation function to imp r ove accuracy,it is more suitable for small industrial parts and target classifi cation detection.The model uses 3D printed industrial parts to make a data set. Experiments show that compared with the original YOLO v3algorithm,using the i mproved network model has good robustness,the accuracy rate is increased by 1.52%,and the time is increased by 7.25ms.Accurately detect the types of parts in the intelligent assembly system in real time.

    参考文献
    相似文献
    引证文献
引用本文

张静,刘凤连,汪日伟.智能装配中基于YOLO v3的工业零件识别算法研究[J].光电子激光,2020,31(10):1054~1061

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-22
  • 出版日期:
文章二维码