基于Faster R-CNN深度网络的茶叶嫩芽图像识别方法
DOI:
CSTR:
作者:
作者单位:

(1.安徽农业大学 信息与计算机学院,合肥 230036; 2.株洲国创轨道科技有限公司,株 洲 412000)

作者简介:

许高建(1974-),男,安徽合肥人,副教授,研究方向为自然语言处理、数据挖掘和农业信息化.

通讯作者:

中图分类号:

基金项目:

农业农村部农业部引进国际先进农业科学技术948项目(2015-Z44,6-X34)和安徽省高校自然科学基金资助项目 (1.安徽农业大学 信息与计算机学院,合肥 230036; 2.株洲国创轨道科技有限公司,株洲 412000)


Recognition approaches of tea bud image based on faster R-CNN depth network
Author:
Affiliation:

(1.School of information and computer,Anhui Agricultural University,Hefei 230036,China;2.Guochuang rail Technology Co.,Ltd,Zhuzhou 412000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文旨在研究基于深度网络模型的茶叶嫩芽识别 方法,根据茶叶的品级和质量要求,把茶叶嫩芽分 为一芽一叶和一芽两叶,因为茶叶的生长姿态千差万别,所以又在茶叶嫩芽识别模型中加入 关于遮挡情况的分 类。选用了基于VGG-16、ResNet-50和ResNet-101特征提取网络的Faster R-CNN深度网 络模型分别对茶叶嫩 芽数据样本进行训练,同时,该方法与三种相同特征提取网络的SSD深度网络模型进行对比 ,实验结果表明, 基于VGG-16特征提取网络的Faster R-CNN深度网络模型的识别效果较好,得出茶叶嫩芽识 别模型的精确度为 85.14%,召回率为78.90,mAP为82.17%。该深度网络模型能够有效识别茶叶嫩芽目标,为茶叶的智能化采摘提供了 技术支撑。

    Abstract:

    At present,domestic tea picking methods are mainly manual picking,su pplemented by mechanical picking. Manual picking has low efficiency and high economic cost.Although mechanical pi cking is efficient,it will damage the buds.The artificial intelligence that has emerged in recent years and applied t o tea picking can effectively solve the problem of mechanical picking and damaged buds,one of the most important tasks is to realize automatic and efficient identification of tea buds.The purpose of this paper is to study the method of tea bud recognition based on the depth network model.According to the grade and quality requirements of tea,the tea b uds are divided into one bud,one leaf and one bud,two leaves.Because the growth posture of tea is very different,th e classification of occlusion is added to the tea bud recognition model.The Faster R-CNN deep network model based on the VGG-16,ResNet-50and ResNet- 101feature extraction network is selected to train the tea bud data samples res pectively.At the same time,the method is compared with the SSD deep network model of the three same feature extraction ne tworks.The experimental results show that the Faster R-CNN deep network model based on the VGG-16feature extractio n network has a good recognition effect. The accuracy of tea bud recognition model is 85.14%,recall rate is 78.90,and m ap is 82.17%.The depth network model can effectively identify the target of tea buds and provide technical support for intelligent tea picking.

    参考文献
    相似文献
    引证文献
引用本文

许高建,张蕴,赖小燚.基于Faster R-CNN深度网络的茶叶嫩芽图像识别方法[J].光电子激光,2020,31(11):1131~1139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-26
  • 出版日期:
文章二维码