基于空间转换网络的端到端车牌检测与识别
DOI:
CSTR:
作者:
作者单位:

(1.西安邮电大学 通信与信息工程学院,陕西 西安 710121; 2.西北工业大学 计算机学院,陕西 西安 710109)

作者简介:

唐倩(1996-),女,硕士研究生,主要从事激光近感探测 成像及其目标识别方面的研究.

通讯作者:

中图分类号:

基金项目:

西安邮电大学科研(101-204020094)资助项目 (1.西安邮电大学 通信与信息工程学院,陕西 西安 710121; 2.西北工业大学 计算机学院,陕西 西安 710109)


End-to-end license plate detection and recognition based on spatial transforme r network
Author:
Affiliation:

(1.College of Communication and Information Engineering,Xi′an University of P os ts & Telecommunications,Xi′an,Shaanxi 710000,China; 2.College of Computer Scien ce,Northwest Polytechnic University,Xi′an,Shaanxi 710000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在复杂场景中,许多现有的车牌检测和识别方面 的研究方法存在数据集单一且有限、算法复杂等问题。因此提出了一个端到端的统一网络: 残差-空间变换-连接时序分类融合的 车辆号牌检测识别网络(LPDR-RSCNet)。该网络结合残差神经网络、空间变压器网络和连 接主义者时间分类,联合训练检测和识别模块,以减少中间错误积累。通过在残差神经网络 提取特征过程中引入空间变换网络,使特征提取器具有平移不变性、旋转不变性和缩放不变 性;在分类器引入连接时序分类,可以自动识别图片标签和特征之间的关系。同时,还可以 适应可变长度序列的识别。在中国城市停车场数据集(CCPD)上进行了比较实验,CCPD是一 个大规模、多样的中文车牌数据集。实验证明LPDR-RSCNet模型在实际应用中可实现98.8% 的识别精度和34 fps的速度,并且相较于YOLO9000、Faster-RCNN、SSD300, 具有更好的检测准确度,可满足智能交通系统中对移动车辆实时车牌检测和识别的要求。

    Abstract:

    Many existing approaches perform poorly in the detection and recogniti on of license plates in complex scenes.So the LPDR-RSCNet-an end-to-end and uni fied network for the detection and recognition of license plates in a single for ward pass was proposed.In this network,the detection and recognition modules a re jointly trained to reduce intermediate error accumulation with residual neura l network,spatial transformer network and connectionist temporal classification .By introducing spatial transformation network into the residual neural network feature extraction process,the extractor has translation invariance,rotation invariance and scaling invariance;by introducing connection time series classif ication into classifier,the relationship between image label and feature can be recognized automatically.At the same time,the network can also be adapted to the recognition of variable length sequences.The experiments are conducted on C CPD which is a large-scale and diverse Chinese license plate dataset.Compared w ith YOLO9000,Fast R-CNN and SSD300,the LPDR-RSCNet model has been proved to be more effective,greatly improves detection accuracy of license plates in comple x field scene performance.In practical applications,this model achieves 98.8% recognition accuracy and 34fps speed.This model can meet the requirements of re al-time license plate detection and recognition of moving vehicles in Intellige nt Traffic System.

    参考文献
    相似文献
    引证文献
引用本文

唐倩,贺伟,张林江.基于空间转换网络的端到端车牌检测与识别[J].光电子激光,2021,32(5):524~531

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-28
  • 出版日期:
文章二维码