基于多任务学习的番茄叶片图像病害程度分类
DOI:
CSTR:
作者:
作者单位:

(西北师范大学 计算机科学与工程学院,甘肃 兰州 730070)

作者简介:

齐永锋(1971-),男,博士,教授,硕士生导师,主要从事数字信号处理、图像处理和模式识别方面的研究.

通讯作者:

中图分类号:

基金项目:

甘肃省科技计划项目(18JR3RA097)和甘肃省高等学校科研项目(2016A-004)资助项目 (西北师范大学 计算机科学与工程学院,甘肃 兰州 730070)


Classification of tomato leaf image disease degree based on multi-task learning
Author:
Affiliation:

(School of Computer Science and Engineering,Northwest Normal University,Lanzhou,Gansu 730070,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的分类深度神经网络大多为扁平型的网 络架构,很少关注数据类别的层次 性结构,导致分类器训练难度较大的问题,本文提出一种基于数据层次关系的多任务学习分 类网络模型。依托番茄叶片病害的层次结构信息设计了一个带有共享网络的由粗粒度到细粒 度的层次结构进行病害程度分类,网络模型以ResNet-50作为网络主干,包括两个子网络: 粗粒度网络模块负责区分番茄病害共5类,细粒度网络模块在残差网络模块的基础上添加 SE模块负责病害程度的分类共9类。通过对网络架构各个分支的验证,以及同VGG-16、 ResNet-34、ResNet-50 3种扁平型网络在病害程度分类任务上做比较,证明本文网络结构 的 可行性和有效性,最终测试集分类精度达到93.97%。证明本文结合数 据与网络的层次结构 采用多任务分类方法,是一种有效的病害程度分类算法。

    Abstract:

    In order to solve the problem that most of the existing deep neural ne tworks for classification are flat network architectures and seldom pay attention to the hi erarchical structure of data categories,which leads to the difficulty of classifier training,a multi- task learning classification network model based on hierarchical relationship of data is proposed.Relying on tomato leaf disease in the hierarchical structure of the information design with a Shared network co mposed of coarse- grained to fine-grained hierarchy for the degree of disease classification,a n etwork model with ResNet-50as the backbone network,including two sub networks:coarse-graine d network module is responsible for the distinction between tomato diseases,a total of five clas ses,fine-grained network module in the residual network module on the basis of adding SE module i s responsible for the degree of disease classification,a total of 9class.Through the verific ation of each branch of the network architecture and the comparison with the three flat networks of VGG -16,ResNet-34and ResNet-50in the classification task of disease degree,the feasibility and effectiveness of the network structure in this paper are proved,and the classification accuracy of t he final test set reaches 93.97%.It is proved that the multi-task classification method combined with the hierarchical structure of data and network in this paper is an effective algorithm for disea se degree classification.

    参考文献
    相似文献
    引证文献
引用本文

齐永锋,张宁宁.基于多任务学习的番茄叶片图像病害程度分类[J].光电子激光,2021,32(8):833~840

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-12
  • 出版日期:
文章二维码