深度视觉频谱残余融合的图像质量评价
DOI:
CSTR:
作者:
作者单位:

(浙江科技学院 信息与电子工程学院,浙江 杭州 310023)

作者简介:

丰明坤(1978-),男,博士,讲师,主要从事 信息智能感知与处理方向的研究.

通讯作者:

中图分类号:

基金项目:

浙江省公益性技术应用研究计划(LGF19F020005)资助项目 (浙江科技学院 信息与电子工程学院,浙江 杭州 310023)


Image quality assessment based on pooling of deeply visual spectral residual
Author:
Affiliation:

(School of Information and Electronic Engineering,Zhejiang University of Scien ce and Technology,Hangzhou,Zhejiang 310012,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有图像质量评价方法的缺陷,通过深度学 习理论建模人眼视觉系统(human v ision system,HVS)特性,提出了一种基于视觉特征深度感知与学习融合(deeply percep tion and learning for pooling,DPLP)的评价方法。首先为了增加图像视觉特征的稳定 性,根据人眼感光的空域结构特征和频域多通道特性,对图像依次进行二维Log-Gabor小波 变换、梯度变换和频谱残余的深度视觉信息处理,然后分别提取各层视觉信息进行质量评价 。其次为了克服HVS融合的不确定性,对质量评价信息采取了深度池化策略,第一层为评价 视图的空域融合,采取了符合人眼感光特性的高斯加权策略;第二层为多通道评价的频域融 合,采取了具有HVS推理能力的BP神经网络的学习-预测策略;第三层为各级视觉特征的评 价 融合,采取了具有自适应特性的回归函数策略。最后,基于现实中的各种失真类型图像进行 了实验,结果表明所提方法具有较高的主客观评价一致性水平和更好的稳定性。

    Abstract:

    To address the shortcomings of the existing image quality assessment (I QA) methods,an IQA method based on deeply perception and learning for pooling ( DPLP) of visual features is proposed by deep learning theory modeling the charac teristics of human vision system (HVS).Firstly,according to spatial structure feature and multi-channel characteristics of the human eye,deeply visual infor m ation of image is successively processed by two-dimensional Log-Gabor wavelet tr ansform,gradient transform and spectrum residual,then each layer of vision inf ormation is extracted for quality assessment in order to increase the stability of image visual features.Secondly,the deeply pooling strategy is adopted for t he quality assessment information in order to overcome the uncertainty of HVS po oling.The first layer is the spatial pooling of the assessment map and the Gaus s weighting strategy which accords with the characteristics of human eye sensiti vity is adopted.The second layer is the frequency pooling of multi-channel ass e ssment and the learning-prediction strategy of BP neural network with HVS reaso n ing ability is adopted.The third layer is the assessment pooling of all levels of visual features and the regression function which holds adaptive characterist ics is adopted.Finally,experiments are carried out based on various types of d istortion images in reality.The results show that the proposed method has highe r consistency level between subjective assessment and objective assessment and b etter stability.

    参考文献
    相似文献
    引证文献
引用本文

丰明坤,孙丽慧,葛丁飞,翟治年,王海江,彭艳斌.深度视觉频谱残余融合的图像质量评价[J].光电子激光,2021,32(10):1055~1064

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-24
  • 出版日期:
文章二维码