基于改进YOLOv3的电容器外观缺陷检测
DOI:
CSTR:
作者:
作者单位:

(1.贵州大学 大数据与信息工程学院,贵州 贵阳 550025; 2.贵州民族大学 机械电子工 程学院,贵州 贵阳 550025)

作者简介:

周骅(1976-),男,博士,副教授, 硕士生导师,主要从事嵌入式系统方面的研究.

通讯作者:

中图分类号:

基金项目:

贵州大学培育项目(黔科合平台人才[2017]5788-60)、贵州大学引进人才培育 项目(贵大人基合字[2015]53号)和贵州省科技计划项目(黔科合成果[2020]2Y027)资助项目 (1.贵州大学 大数据与信息工程学院,贵州 贵阳 550025; 2.贵州民族大学 机械电子工程学院,贵州 贵阳 550025)


Capacitor appearance defect detection based on improved YOLOv3
Author:
Affiliation:

(1.College of Big Data and Information Engineering,Guizhou University,Guiyang,Guizhou 550025,China; 2.College of Mechanical and Electronic Engineering,Guizhou Minzu University,Guiyang,Guizhou 550025, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对部署于有限算力平台的YOLOv3(you only look once v3)算法对电容器外观缺陷存在检测速度较慢的问题, 提出了基于 YOLOv3算法改进的轻量化算法MQYOLOv3。首先采用轻量化网络MobileNet v2作为特征提取模 块,通 过利用深度可分离式卷积替换一般卷积操作,使得模型的参数量大幅度降低进而提高模型的 检测速度,同 时也带来了检测精度的降低;然后在网络结构中嵌入空间金字塔池化结构实现局部特征与全 局特征的融合、 引入距离交并比(distance intersection over union, DIoU)损失函数优化交并比(intersection over union, IoU)损失函数以及使用Mish激活函数优化Leaky ReLU激活函数来提高模型的检 测精度。本文采用自制的电容器外观缺陷 数据集进行实验,轻量化MQYOLOv3算法的平均精度均值(mean average precision,mAP)为87.96%, 较优化前降低了1.16%,检测速度从1.5 FPS提升 到7.7 FPS 。实验表明,本文设计的轻量化MQYOLOv3算法在保证检测精度的同时,提高了检测速度。

    Abstract:

    Aiming at the problem that the you only look once v3(YOLOv3) algorithm deployed on the limited computing power platform has a slow detection speed for the appearance defects of capacitors,an improved lightweight algorithm MQYOLv3based on YOLOv3algorithm is proposed.First,the lightweight network MobileNet v2is used as the feature extraction module,and by replacing the general convolution operation with the d eep separable convolution, the amount of model parameters is greatly reduced and the detection speed of the model is improved,but also bring the reduction of detection accuracy.Then,the spatial pyramid pooling str ucture is embedded in the network structure to realize the fusion of local and global features,the distance intersection over union (DIoU) loss func tion is introduced to optimize the intersection over union (IoU) loss function,and the Mish activation function is used optimize the Leaky ReLU activation function to improve the detection accuracy of the model.This paper uses a self-made capacitor appe arance defect data set for experiments.The mean average precision (mAP) of the lightweight MQYOLOv3algorithm is 87.96%,whic h is 1.16% lower than before optimization,and the detection speed is increased from 1.5FPS to 7.7FPS. Experiments show that the lightweight MQYOLOv3algorithm designed in this paper improves the detection spe ed while ensuring the detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

魏相站,赵麒,周骅.基于改进YOLOv3的电容器外观缺陷检测[J].光电子激光,2021,32(12):1278~1284

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-25
  • 出版日期:
文章二维码