融入频域特征的航天复合材料缺陷智能检测
DOI:
CSTR:
作者:
作者单位:

(重庆大学 光电技术及系统教育部重点实验室, 重庆 400030)

作者简介:

罗钧(1963-),男,教授,博士生导师,主要研究方向为 模式识别和人工智能、精密机械与测试计量、智能信息处理.

通讯作者:

中图分类号:

基金项目:

上海航天科技创新SAST基金(SAST2018-065)资助项目 (重庆大学 光电技术及系统教育部重点实验室, 重庆 400030)


Intelligent detection of defects in aerospace composite materials incorporated i n frequency domain features
Author:
Affiliation:

(Key Laboratory of Optoelectronic Technology and System of Ministry of Education ,Chongqing University,Chongqing 400030, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统人力无损检测识别方式存在的准确度与可靠性不足,且处理缺陷种类单一的 问题,本文提出了一种融入频域特征的航天复合材料缺陷检测算法。首先, 为了提高缺陷图像的特征提取效果,在特征提取骨干网络中添加图像的频域输入信息;其次 ,为了提高缺陷的可视化效果和检测精度,提出信息专注模块,并在面具R-CNN(mask region-based convolutional neural network, Mask R-CNN)的基础上 , 改进分割掩模损失函数;最后,结合级联R-CNN(cascade region-based convolutional neural network, Cascade R-CNN)结构,形成了新的实例分 割网络。此外,在航天复合材料缺陷X射线图像数据集中对提出的实例分割网络进行了实验 验证,模型检测的平均准确度达到了95.3%,与Mask R-CNN、级联面具R-CNN(cascade mask region-based convolutional neural network, Cascade Mask R-CNN)等实例分割 算法相比,取得了更为优良的效果。该研究成果已应用于实际工业生产中几种常见航天复合 材料缺陷的智能检测。

    Abstract:

    For the traditional human non-destructive testing and recognition meth ods,there are problems of insufficient accuracy and reliability as well as few kinds of defects to detect.To solve them,this paper proposes an aerospace com posite material defect detection algorithm incorporating frequency domain featur es.The algorithm can be divided into three main steps.Firstly,the input infor mation of the frequency domain of the image is added to the feature extraction b ackbone network which is used to improve the feature extraction effect of defect images.Secondly,a module of informational concentration is proposed in order to improve the visualization capability and detective accuracy of defects,and o n the basis of mask region-based convolutional neural network (Mask R-CNN),the segmentation mask loss function is improved.Fin a lly,combined with the cascaded neural network structure of cascade region-based convolutional neural network (Cascade R-CNN),a ne w instance segmentation network is formed.In addition,the proposed instance seg mentation network was experimentally verified in the aerospace composite materia l defect X-ray image data set,and the average accuracy of the model detection r eached 95.3%,which achieved better results than other instance segmentation alg orithms,such as Mask R-CNN and cascade mask region-based convolutional neural network (Cascade Mask R-CNN).The research result has bee n applied to the intelligent detection of several common aerospace composite mater ial defects in actual industrial production.

    参考文献
    相似文献
    引证文献
引用本文

罗钧,李志学,龚燕峰.融入频域特征的航天复合材料缺陷智能检测[J].光电子激光,2022,33(1):67~74

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-25
  • 出版日期:
文章二维码