自适应时空正则的无人机目标跟踪算法
DOI:
CSTR:
作者:
作者单位:

(1.泰州职业技术学院信息技术学院,江苏 泰州 225300; 2.苏州大学 计算机科学与技术 学院,江苏 苏州 215006)

作者简介:

吴捷(1982-),男, 硕士, 副教授, 主要从事计算机视觉方面的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61402310)、江苏省自然科学基金项目(BK20141195)和泰州职业技术学院重点科研项目 (1821819039)资助项目 (1.泰州职业技术学院信息技术学院,江苏 泰州 225300; 2.苏州大学 计算机科学与技术 学院,江苏 苏州 215006)


UAV target tracking algorithm based on adaptive spatial-temporal regularization
Author:
Affiliation:

(1.College of Information technology,Taizhou Polytechnic College,Taizhou, Jiangsu 225300,China; 2.School of Computer Science and Technology,Soochow University,Su zhou, Jiangsu 215006,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机跟踪场景中目标分辨率较低且易受无人机(unmanned aerial vehicle,UAV)飞行姿态、速度变化等因素的影 响而难以对目标进行鲁棒跟踪的问题,提出了一种自适应时空正则的无人机目标跟踪算法以 有效解决上述问题。在时空正则相关滤波器(spatial temporal regularized correlation filter,STRCF)算法基础上引入AutoTrack中的空间正则性代价并利用峰值 旁瓣比和局部响应变化量,在线动态更新时空正则化参数以提升跟踪器的准确性,通过在跟踪 器中嵌入遮挡处理模块解决目标遭遮挡后跟踪漂移的问题。在多个无人机基准数据集上进行 了测试,实验结果表明,与基准算法AutoTrack相比,本文算法具有更高的精确度和更快的 处理速度。其中在DTB70数据集上跟踪精度和速度分别提升了1.5% 和74.4%;在UAVDT 数据集上9个属性的分类对比中,本文算法在尺度变化(scale variation,SV)、目标模糊(object blur,OB)等7个属 性上取得较高的性能,均排在第一位。由此可见本文算法可以更好地满足无人机应用需求。

    Abstract:

    Aiming at the problem that the target resolution in unmanned aerial vehicle (UAV) tracking scene is low and it is difficult to track the target robustly due to the influence of UAV flight attitude,speed change and other factors,an adaptive spatial-temporal regularization algorithm for UAV target tracking is proposed.Based on the spatial temporal regularized correlation filter (STRCF) algorithm,the cost of spatial r egularity in AutoTrack is introduced,and the spatial-temporal regularization parameters are dynamically updated online by using the peak side lobe ratio and local response variation ve ctor to improve the accuracy of the tracker.Occlusion processing module is embedded in the tracker to solve the tracking drift problem after the target is occluded.Experimental r esults on several UAV benchmark datasets show that the proposed algorithm has higher accuracy and faster processing speed than the benchmark algorithm Autotrack.The tracking accuracy a nd speed of DTB70data set are improved by 1.5% and 74.4% respectively.In the classifica tion comparison of nine attributes on UAVDT data set,this algorithm achieves high pe rformance on seven attributes,such as scale variation (SV),object blur (OB),etc.It can be seen that this algorithm can better meet the requirements of UAV applicat ions.

    参考文献
    相似文献
    引证文献
引用本文

吴捷,马小虎.自适应时空正则的无人机目标跟踪算法[J].光电子激光,2022,33(2):141~148

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-24
  • 出版日期:
文章二维码