一种自动选择特征的激光诱导击穿光谱定量分析方法
DOI:
CSTR:
作者:
作者单位:

(1.西南科技大学 制造科学与工程学院, 四川 绵阳 621010; 2.陆军勤务学院 教研保障中心, 重庆 401331)

作者简介:

史晋芳(1977-),女,副教授,硕士生 导师,主要从事智能化测控与图像处理技术的研究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11972313,11902277)资助项目 (1.西南科技大学 制造科学与工程学院, 四川 绵阳 621010; 2.陆军勤务学院 教研保障中心, 重庆 401331)


An automatic feature selection method for laser induced breakdown spectroscopy q uantitative analysis
Author:
Affiliation:

(1.School of Manufacturing Science and Engineering, Southwest University of Scien ce and Technology,Mianyang,Sichuan 621010, China; 2.Amy Logistics University of P LA, Chongqing 401331, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对激光诱导击穿光谱技术(laser-induced breakdown spectroscopy,LIBS)定量分析中的特征选择问题,提出一种基 于Pearson相关系数的排序、主成分分析和L1正则项相结合的自动选择特征的定量分析方 法,建立了土壤中Co元素的定量分析模型。该模型训练集和测试集的R2(决 定系数)分 别为0.995和0.991, 均方根误差(root mean square error, RMSE) 分别 为4.634mg/kg和6.078 mg/kg, 平均绝对误差(mean absolute error, MAE) 分别为6.100%和6.441%,特征个数由原始数据的42870个降至5个 ,耗时仅 0.97 s。结果表明:采用该方法可降低特征子集维度并提高模型的泛 化性和精确度,为LIBS技术定量分析的特征选择提供一种高效的方法。

    Abstract:

    Aiming at the problems of prior knowledge and slow algorithm convergence for feature selection in the quantitative analysis of laser-induced breakdown spect roscopy (LIBS) technology,this paper proposes a quantitative analysis method for automatically selecting features with a combination of Pearson correlation coefficient -based ranking, principal component analysis and L1regular term.This method first selects the feature that has the greatest correlation with the target element,then compresses the feature dimension to wi thin the number of samples,and finally sparses the feature weight coefficient and establishes a quantitative analysis model.This method is used to screen the characteristic subsets of Co elements in the soil and establish a quantitative analysis model.The R2(coefficient of determination) of the training set and test set of the model reached 0.995and 0.991,root mean square error (RMSE) were 4.634mg/kg and 6.078mg/kg,mean absolute error (MAE) were 6.100% and 6.441%.The number of features is reduced from 42870of the original spectral data to 5,whi ch takes only 0.97s.The results show that the method proposed in this paper can reduce the dimension of feature subsets and improve the generalization and accuracy of quantitative anal ysis models, providing an efficient method for feature selection in quantitative analysis of LIBS technology.

    参考文献
    相似文献
    引证文献
引用本文

王凯,史晋芳,邱荣,万情,张志威,潘高威.一种自动选择特征的激光诱导击穿光谱定量分析方法[J].光电子激光,2022,33(2):187~192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-24
  • 出版日期:
文章二维码