基于多尺度局部极值分解与ResNet152的红外与可见光图像融合
DOI:
CSTR:
作者:
作者单位:

(长春理工大学 电子信息工程学院,吉林 长春 130022)

作者简介:

陈广秋(1977-),男,博士,副教授.硕 士生导师,研究方向为图像处理与机器视觉.

通讯作者:

中图分类号:

基金项目:

吉林省科技发展计划项目(20200201167JC)和吉林省教育厅“十三五”科学技术项目(JJKH20200785KJ)资助项目


Infrared and visible image fusion based on multiscale local extrema decompositio n and ResNet152
Author:
Affiliation:

(School of Electronic and Information Engineering,Changchun University of Scien ce and Technology,Changchun,Jilin 130022, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了进一步提升红外与可见光图像融合方法的性能 ,本文提出了一种基于多尺度局部极值分解与深度学习网络ResNet152的红外与可见光图像融合方法。首先,利用多尺度局部极值分解 (multiscale local extrema decomposition,MLED)方法将源图像分解为近似图像和细节图 像,分离 出源图像中重叠的重要特征信息。然后采用残差网络ResNet152深度提取源图像的多维显著 特征, 以l1-范数作为活性测度生成显著特征图,对近似图像进行加权平均融合,以保持能量和残 留细节 信息不丢失。在细节图像中,利用“系数绝对值取大”规则获得初始决策图,源图像作为引 导图像, 初始决策图作为输入图像进行引导滤波处理,得到优化决策图,计算加权局部能量得到能量 显著 图,对细节图像进行加权平均融合,使融合图像具有丰富的纹理细节和良好的视觉边缘感知 。最 后,对近似融合图像和细节融合图像进行重构,得到融合图像。实验结果表明,与现有的典 型融 合方法相比,本文所提出的融合方法在客观评价和视觉感受方面都取得了最好的效果。

    Abstract:

    In order to further improving the performance of infrared and visible image fusi on method,an infrared and visible image fusion method based on multiscale local extrema decom position (MLED) and deep learning network ResNet152is proposed in this paper.Firstly,the source images are decomposed into approximate images and many detail images using MLED,which can separate out the overlapped important feature information.Secondly,the residual network ResNet152is used to extract the multi-dimensional deep features of the source images,and the l 1-norm is used as the activity level measure to generate the salient feature maps,the weighted average fusion algori thm is carried out for the approximate images,which can keep the energy and residual details not lost. For the detail images, the initial decision map is obtained by the rule “coefficient absolute max”.T he source images are used as the guided images,and the initial decision maps are used as the input images for guided filtering.So the optimized decision maps are obtained,the weighted local energy is calculate d to get the energy saliency maps.The weighted average algorithm is carried out for the detail imag es,which can make the fusion image having rich texture details and good visual edge perception.Finall y,the fusion image is obtained by reconstructing the fused approximate image and detail images.The ex perimental results show that,compared with the existing typical fusion methods,the proposed method can achieve state-of-the-art results in terms of both objective evaluation and visual qua lity.

    参考文献
    相似文献
    引证文献
引用本文

陈广秋,王帅,黄丹丹,段锦.基于多尺度局部极值分解与ResNet152的红外与可见光图像融合[J].光电子激光,2022,33(3):283~295

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-27
  • 出版日期:
文章二维码