基于迁移学习的遥感图像场景分类
DOI:
CSTR:
作者:
作者单位:

(西安邮电大学 电子工程学院,陕西 西安 710121)

作者简介:

陈 琪(1996-),女,硕士研究生,主要从事图像处理的研 究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61874087,61834005,61634004)资助项目


Scene classification of remote sensing image based on transfer learning
Author:
Affiliation:

(School of Electronics and Engineering,Xi′an University of Posts and Telecomm unications,Xi′an,Shaanxi 710121, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在遥感图像场景分类中,基于卷积神经网络 (convolutional neural network,CNN) 的分 类算法存在对训练数据的依赖性,且在缺乏训练数据时分 类效果差等问题,提出一种基于迁移学习的分类算法。首先,选取现有的多个CNN预训练模型,利用迁 移学习的优势对模型进行微调,目的是提取图像不同的高层特征;然后,融合图像的多种高 层特征,使得特征信 息更加丰富;最后,将融合后的高层特征输入到基于逻辑回归的遥感图像分类器中,得到遥 感影像的分类结果。 在UCMerced_LandUse遥感数据集中进行实验,与现有算法进行比较分析,所提算法在3种评 价指标上有明显提 升。通过分析实验结果表明,该算法在仅有10%的训练数据下,能够 达到92.01%的分类准确率和91.61%的Kappa系数。

    Abstract:

    In remote sensing image scene classification,a classification algorit hm based on convolutional neural network (CNN) has the dependence on training data,and the classification effect is poor in th e absence of training data,and a classification algorithm based on transfer learning is proposed.Firstly,the existing pre-tr aining model of multiple CNN is selected,and the model is fine-tuned by using the advantages of transfer learning to extract the different high-level features of the image,then,the fusion of the image′s man y high-level features makes the feature information more abundant,and finally,the merged high-level features are inpu t into the remote sensing image classifier based on logical regression,and the classification results of remote sensing im ages are obtained.Experiments are carried out in remote sensing data sets of UCMerced_LandUse,and the existing algorithms are compared and analyzed,and the proposed algorithms are significantly improved in three evaluation indicators. By analyzing the experimental results,it is shown that the algorithm can achieve 92.01% classification accuracy and 91.61% K appa coefficient under only 10% of the training data.

    参考文献
    相似文献
    引证文献
引用本文

刘有耀,陈琪,李舒曼.基于迁移学习的遥感图像场景分类[J].光电子激光,2022,33(7):709~714

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-27
  • 最后修改日期:2021-12-21
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码