基于增量二维主成分分析的非线性转子系统故障诊断方法
DOI:
CSTR:
作者:
作者单位:

(1.天津理工大学 机械工程学院 天津市先进机电系统设计与智能控制重点实验室,天津 300384; 2.天津理工大学 机电工程国家级实验教学示范中心,天津 300384)

作者简介:

刘 军 (1961-),男,博士,教授,博士研究生 导师,主要从事转子动 力学、振动控制、故障诊断以及信号的特征提取与分类识别方面的研 究.

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11872274)和天津市科研创新项目(2020YJSS052)资助项目


Method of fault diagnosis of nonlinear rotor system based on incremental 2D prin cipal component analysis
Author:
Affiliation:

(1.Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligen t Control,School of Mechanical Engineering,Tianjin University of Technology,T ianjin 300384, China;2.National Demonstration Center for Experimental Mechanic al and Electrical Engineering Education,Tianjin University of Technology,Tianj in 300384, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能故障诊断实际应用中存在的故障样本难 以大量获取、面对新增故障类别需要 一个完整的再训练周期的实时性等问题,提出一种采用增量二维主成分分析(incremental t wo-dimensional principal component analysis,I2DPCA)对非线性裂纹转子系统进行故 障 诊断的方法。首先构建水平支撑的非线性裂纹转子系统模型及其动力学方程,分别探究不同 裂纹深度和质量偏心参数时系统振动响应的变化特征。其次将时域振动信号归一化为图像样 本,由I2DPCA算法提取具有高判别力的低维故障特征。在上述处理基础上,使用k-最近邻( k-nearest neighbor,KNN)分类算法进行识别率的计算。数值仿真及相关实验的研究结果 表 明,基于I2DPCA算法的故障诊断方法可以在高速区域及小样本情形下有效地区分不同故障状 况的信号,为裂纹转子系统的早期故障诊断提供了新的检测策略。

    Abstract:

    In view of practical problems for the difficulty of obtaining large nu mber of fault samples in the field of the intelligent fault diagnosis and proble ms of the real-time and so on for the need of a complete retraining period in t h e new fault categories,the new incremental 2D principal component analysis (I2D PCA) method of fault diagnoses is applied in the nonlinear cracked rotor system.Firstly,dynamics equations of a horizontally supported nonlinear rotor system with transverse cracks are established to investigate vibration varying characteristics of the system with different crack depths and mass eccentricity.Se condly,vibration signals in the time domain are normalized to image samples,an d low dimension fault features with high discrimination are extracted by the I2D PCA algorithm.Based on the above treatment,the k-nearest neighbor (KNN) class i fication algorithm is used to calculate the recognition rate.The results of num erical simulations and related experiments show that the fault diagnosis method based on the I2DPCA can effectively distinguish signals of different fault condi tions in high rotating speed zone and small samples situation,and provide a new detection strategy for the early diagnosis of cracked rotor systems.

    参考文献
    相似文献
    引证文献
引用本文

陈建恩,何晓蕾,刘军,王肖锋.基于增量二维主成分分析的非线性转子系统故障诊断方法[J].光电子激光,2022,33(7):729~738

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-01
  • 最后修改日期:2022-05-19
  • 录用日期:
  • 在线发布日期: 2022-08-17
  • 出版日期:
文章二维码